1
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Feng J, Tan A, Li W, Zheng Y. Small nucleolar RNA host gene 5 plays a role in orthodontic tooth movement by inhibiting osteoclast differentiation. Orthod Craniofac Res 2024; 27:775-784. [PMID: 38712649 DOI: 10.1111/ocr.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND OBJECTIVES The alveolar bone remodelling promoted by reasonable mechanical force triggers orthodontic tooth movement (OTM). The generation of osteoclasts is essential in this process. However, the mechanism of mechanical force mediating osteoclast differentiation remains elusive. Small nucleolar RNA host gene 5 (SNHG5), which was reported to mediate the osteogenic differentiation of bone marrow mesenchymal stem cells in our previous study, was downregulated in human periodontal ligament cells (hPDLCs) under mechanical force. At the same time, the RANKL/OPG ratio increased. Based on this, we probed into the role of SNHG5 in osteoclast formation during OTM and the relevant mechanism. MATERIALS AND METHODS SNHG5 and the RANKL/OPG ratio under different compressive forces were detected by western blotting (WB) and qRT-PCR. Impact of overexpression or knockdown of SNHG5 on osteoclast differentiation was detected by qRT-PCR, WB and transwell experiments. The combination of SNHG5 and C/EBPβ was verified by RNA immunoprecipitation and RNA pull-down assays. The expression of SNHG5 and osteoclast markers in gingiva were analysed by qRT-PCR and the paraffin sections of periodontal tissues were used for histological analysis. RESULTS Compressive force downregulated SNHG5 and upregulated the RANKL/OPG ratio in hPDLCs. Overexpression of SNHG5 inhibited RANKL's expression and osteoclast differentiation. SNHG5 combined with C/EBPβ, a regulator of osteoclast. The expression of SNHG5 in periodontal tissue decreased during OTM. CONCLUSION SNHG5 inhibited osteoclast differentiation during OTM, achieved by affecting RANKL secretion, which may provide a new idea to interfere with bone resorption during orthodontic treatment.
Collapse
Affiliation(s)
- Jingjing Feng
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Anqi Tan
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Weiran Li
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yunfei Zheng
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
3
|
Kim HJ, Noh HK, Park HS. Recovery bone formation on radiographic palatal bone dehiscences after incisor retraction with microimplants. Angle Orthod 2024; 94:168-179. [PMID: 38195052 PMCID: PMC10893923 DOI: 10.2319/081823-566.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVES To investigate the difference in labial and palatal alveolar bone thickness and height during the retention period after incisor retraction treatment with microimplant. MATERIALS AND METHODS A sample of 21 patients (mean age: 17.80 ± 4.38 years) who underwent incisor retraction treatment using microimplants after premolar extraction was investigated. The cone-beam computed tomography images at pretreatment, posttreatment, and retention were used to measure anterior alveolar bone thickness (labial, palatal, and total; at three vertical levels) and height (labial and palatal) and differences in the incisor position during treatment or retention. Repeated-measures analysis of variance with Bonferroni correction was performed to compare the variables at T0, T1, and T2. RESULTS The maxillary central incisor moved posteriorly by approximately 8.0 mm along with intrusive movement of 1.8 mm after treatment. The alveolar bone thickness significantly decreased on the palatal side and increased on the labial side after treatment. Thereafter, the palatal bone thickness significantly increased and labial bone thickness decreased during the retention period. The palatal interdental bone depressed by incisor retraction showed substantial bone deposition after retention. CONCLUSIONS Radiographic palatal bone dehiscences on the incisor root and palatal bone depression between the incisor roots were apparent after treatment. This palatal bone loss around the incisor roots noticeably recovered with newly formed bone during retention.
Collapse
|
4
|
Nugraha AP, Ernawati DS, Narmada IB, Bramantoro T, Riawan W, Situmorang PC, Nam HY. RANK-RANKL-OPG expression after gingival mesenchymal stem cell hypoxia preconditioned application in an orthodontic tooth movement animal model. J Oral Biol Craniofac Res 2023; 13:781-790. [PMID: 38028229 PMCID: PMC10661597 DOI: 10.1016/j.jobcr.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background The expression of receptor activator of Nuclear Factor Kappa Beta (RANK) and its ligand (RANKL), as well as osteoprotegrin (OPG), in the alveolar bone (AB), may improve bone remodeling during orthodontic tooth movement (OTM). It is hypothesized that hypoxia-preconditioned gingival mesenchymal stem cells (GMSC) may be more effective than normoxia-preconditioned GMSC in this regard. This study aims to investigate the expression of RANK, RANKL, and OPG in the compression and tension sides of AB after allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned in rabbits (Oryctolagus cuniculus) undergoing OTM. Methods Twenty-four healthy young male rabbits were divided into two groups: T1, which underwent OTM and received normoxia-preconditioned GMSC, and T2, which underwent OTM and received hypoxia-preconditioned GMSC. A ligature wire was attached to the mandibular first molar and connected to a 50 g/mm2 closed coil spring, exerting force on the central incisor and left mandibular molar of the experimental animals. After 24 h of OTM, either normoxia- or hypoxia-preconditioned GMSC were injected into the gingiva of the samples in a single dose of 20 μl of phosphate-buffered saline (PBS). All samples were sacrificed on days 7, 14, and 28, and immunohistochemistry was performed to analyze the expression of RANK, RANKL, and OPG on the tension and compression sides. Results The expressions of RANK-RANKL-OPG in the alveolar bone of the compression and tension sides were significantly different during the 14-day period of OTM following allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned (p < 0.05). Conclusion The expression of RANK-RANKL was significantly increased on the compression side of the alveolar bone during OTM after the administration of hypoxia-preconditioned allogeneic GMSC but not on the tension side. Conversely, RANKL-OPG expression was enhanced on the tension side but not on the compression side, as observed through immunohistochemical analysis in vivo.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Taufan Bramantoro
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Putri Cahaya Situmorang
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, Indonesia
| | - Hui Yin Nam
- Nanotechnology and Catalysis Research Center (NANOCAT), Universiti Malaya, Kuala Lumpur, Malaysia
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Chen Y, Zhang C. Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling. J Transl Med 2023; 21:101. [PMID: 36759852 PMCID: PMC9912641 DOI: 10.1186/s12967-023-03951-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Orthodontic tooth movement (OTM) is biologically based on the spatiotemporal remodeling process in periodontium, the mechanisms of which remain obscure. Noncoding RNAs (ncRNAs), especially microRNAs and long noncoding RNAs, play a pivotal role in maintaining periodontal homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. Under force stimuli, mechanosensitive ncRNAs with altered expression levels transduce mechanical load to modulate intracellular genes. These ncRNAs regulate the biomechanical responses of periodontium in the catabolic, anabolic, and coupling phases throughout OTM. To achieve this, down or upregulated ncRNAs actively participate in cell proliferation, differentiation, autophagy, inflammatory, immune, and neurovascular responses. This review highlights the regulatory mechanism of fine-tuning ncRNAs in periodontium remodeling during OTM, laying the foundation for safe, precise, and personalized orthodontic treatment.
Collapse
Affiliation(s)
- Yuming Chen
- grid.284723.80000 0000 8877 7471Stomatological Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Behm C, Zhao Z, Andrukhov O. Immunomodulatory Activities of Periodontal Ligament Stem Cells in Orthodontic Forces-Induced Inflammatory Processes: Current Views and Future Perspectives. FRONTIERS IN ORAL HEALTH 2022; 3:877348. [PMID: 35601817 PMCID: PMC9114308 DOI: 10.3389/froh.2022.877348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Orthodontic tooth movement (OTM) is induced by applying active mechanical forces, causing a local non-infectious inflammatory response in the periodontal ligament (PDL). As a prerequisite for OTM, the inflammation status is associated with increased levels of various cytokines and involves the interaction between immune cells and periodontal ligament stem cells (hPDLSCs). It is well established that hPDLSCs respond to orthodontic forces in several ways, such as by secreting multiple inflammatory factors. Another essential feature of hPDLSCs is their immunomodulatory activities, which are executed through cytokine (e.g., TNF-α and IL-1β)-induced production of various soluble immunomediators (e.g., indoleamine-2,3-dioxygenase-1, tumor necrosis factor-inducible gene 6 protein, prostaglandin E2) and direct cell-to-cell contact (e.g., programmed cell death ligand 1, programmed cell death ligand 2). It is well known that these immunomodulatory abilities are essential for local periodontal tissue homeostasis and regeneration. So far, only a handful of studies provides first hints that hPDLSCs change immunological processes during OTM via their immunomodulatory activities. These studies demonstrate the pro-inflammatory aspect of immunomodulation by hPDLSCs. However, no studies exist which investigate cytokine and cell-to-cell contact mediated immunomodulatory activities of hPDLSCs. In this perspective article, we will discuss the potential role of the immunomodulatory potential of hPDLSCs in establishing and resolving the OTM-associated non-infectious inflammation and hence its potential impact on periodontal tissue homeostasis during OTM.
Collapse
|
7
|
Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 2021; 13:20. [PMID: 34183652 PMCID: PMC8239047 DOI: 10.1038/s41368-021-00125-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Nowadays, orthodontic treatment has become increasingly popular. However, the biological mechanisms of orthodontic tooth movement (OTM) have not been fully elucidated. We were aiming to summarize the evidences regarding the mechanisms of OTM. Firstly, we introduced the research models as a basis for further discussion of mechanisms. Secondly, we proposed a new hypothesis regarding the primary roles of periodontal ligament cells (PDLCs) and osteocytes involved in OTM mechanisms and summarized the biomechanical and biological responses of the periodontium in OTM through four steps, basically in OTM temporal sequences, as follows: (1) Extracellular mechanobiology of periodontium: biological, mechanical, and material changes of acellular components in periodontium under orthodontic forces were introduced. (2) Cell strain: the sensing, transduction, and regulation of mechanical stimuli in PDLCs and osteocytes. (3) Cell activation and differentiation: the activation and differentiation mechanisms of osteoblast and osteoclast, the force-induced sterile inflammation, and the communication networks consisting of sensors and effectors. (4) Tissue remodeling: the remodeling of bone and periodontal ligament (PDL) in the compression side and tension side responding to mechanical stimuli and root resorption. Lastly, we talked about the clinical implications of the updated OTM mechanisms, regarding optimal orthodontic force (OOF), acceleration of OTM, and prevention of root resorption.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: A Critical Review. J Dent Res 2021; 101:11-20. [PMID: 34105404 DOI: 10.1177/00220345211016285] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Orthodontic tooth movement (OTM) is generated by a mechanical force that induces an aseptic inflammatory response in the periodontal tissues and a subsequent coordinated process of bone resorption and apposition. In this review, we critically summarize the current knowledge on the immune processes involved in OTM inflammation and provide a novel insight into the relationship between classical inflammation and clinical OTM phases. We found that most studies focused on the acute inflammatory process, which ignites the initial alveolar bone resorption. However, the exact mechanisms and the immune reactions involved in the following OTM phases remain obscure. Recent studies highlight the existence of a typical innate response of resident and extravasated immune cells, including granulocytes and natural killer (NK), dendritic, and γδT cells. Based on few available studies, we shed light on an active, albeit incomplete, process of resolution in the lag phase, supported by continuously elevated ratios of M1/M2 macrophage and receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. This partial resolution enables tissue formation and creates the appropriate environment for a transition between the innate and adaptive arms of the immune system, essential for the tissue's return to homeostasis. Nevertheless, as the mechanical trigger persists, the resolution turns into a low-grade chronic inflammation, which underlies the next, acceleration/linear OTM phase. In this stage, the acute inflammation dampens, and a simultaneous process of bone resorption and formation occurs, driven by B and T cells of the adaptive immune arm. Excessive orthodontic forces or tooth movement in periodontally affected inflamed tissues may hamper resolution, leading to "maladaptive homeostasis" and tissue loss due to uncoupled bone resorption and formation. The review ends with a brief description of the translational studies on OTM immunomodulation. Future studies are necessary for further uncovering cellular and molecular immune targets and developing novel strategies for controlling OTM by local and sustained tuning of the inflammatory process.
Collapse
Affiliation(s)
- S Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Klein
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Cattaneo PM, Cornelis MA. Orthodontic Tooth Movement Studied by Finite Element Analysis: an Update. What Can We Learn from These Simulations? Curr Osteoporos Rep 2021; 19:175-181. [PMID: 33538966 DOI: 10.1007/s11914-021-00664-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW To produce an updated overview of the use of finite element (FE) analysis for analyzing orthodontic tooth movement (OTM). Different levels of simulation complexity, including material properties and level of morphological representation of the alveolar complex, will be presented and evaluated, and the limitations will be discussed. RECENT FINDINGS Complex formulations of the PDL have been proposed, which might be able to correctly predict the behavior of the PDL both when chewing forces and orthodontic forces are simulated in FE models. The recent findings do not corroborate the simplified view of the classical OTM theories. The use of complex and biologically coherent FE models can help understanding the mechanisms leading to OTM as well as predicting the risk of root resorption related to specific force systems and magnitudes.
Collapse
Affiliation(s)
- Paolo M Cattaneo
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia.
| | - Marie A Cornelis
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia
| |
Collapse
|
10
|
He W, Zhang N, Lin Z. MicroRNA-125a-5p modulates macrophage polarization by targeting E26 transformation-specific variant 6 gene during orthodontic tooth movement. Arch Oral Biol 2021; 124:105060. [PMID: 33524878 DOI: 10.1016/j.archoralbio.2021.105060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of microRNA-125a-5p (miR-125a-5p) in macrophages during orthodontic tooth movement (OTM). DESIGN Periodontal ligament tissues were collected from patients underwent OTM. Periodontal ligament cells were isolated from periodontal ligament tissues. Periodontal ligament stem cells were isolated from normal human impacted third molars. The miR-125-5p levels were measured by real-time quantitative polymerase chain reaction. The impact of miR-125-5p on macrophage polarization was tested by alizarin red staining assay. The effects of miR-125-5p and E26 transformation-specific variant 6 gene (ETV6) on M1/M2 macrophages phenotype markers were determined by real-time quantitative polymerase chain reaction, western blot, and flow cytometry analyses. The interaction between miR-125-5p and ETV6 was verified using luciferase reporter and RNA immunoprecipitation assays. RESULTS Periodontal miR-125a-5p was upregulated under the force. Macrophage polarization facilitated osteogenesis by cocultured system. Moreover, miR-125a-5p was upregulated in macrophages polarized with M2 conditions. MiR-125a-5p downregulation promoted the expression of M1 phenotype markers, while suppressed the expression of M2 markers. Mechanistically, ETV6 was confirmed to be a target of miR-125a-5p. ETV6 overexpression increased the expression of M1 polarized markers, while decreased the expression of M2 polarized markers. Furthermore, ETV6 knockdown reversed the effects of miR-125a-5p inhibitor on both M1 macrophages and M2 macrophages. CONCLUSIONS Overall, miR-125a-5p facilitates bone healing by targeting ETV6 to promote macrophage M2 polarization.
Collapse
Affiliation(s)
- Wendan He
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518033, China.
| | - Nan Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhengshen Lin
- Department of Stomatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 510630, China
| |
Collapse
|
11
|
Proff P, Schröder A, Seyler L, Wolf F, Korkmaz Y, Bäuerle T, Gölz L, Kirschneck C. Local Vascularization during Orthodontic Tooth Movement in a Split Mouth Rat Model-A MRI Study. Biomedicines 2020; 8:biomedicines8120632. [PMID: 33352746 PMCID: PMC7766506 DOI: 10.3390/biomedicines8120632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Orthodontic tooth movement to therapeutically align malpositioned teeth is supposed to impact blood flow in the surrounding tissues. Here, we evaluated actual vascularization in the tension area of the periodontal ligament during experimental tooth movement in rats (N = 8) with magnetic resonance imaging (MRI). We inserted an elastic band between the left upper first and the second rat molar; the right side was not treated and served as control. After four days of tooth movement, we recorded T1-weighted morphologic and dynamic-contrast-enhanced MRI sequences with an animal-specific 7 Tesla MRI to assess of local vascularization. Furthermore, we quantified osteoclasts and monocytes in the periodontal ligament, which are crucial for orthodontic tooth movement, root resorptions as undesirable side effects, as well as the extent of tooth movement using paraffine histology and micro-CT analysis. Data were tested for normal distribution with Shapiro–Wilk tests followed by either a two-tailed paired t-test or a Wilcoxon matched-pairs signed rank test. Significant orthodontic tooth movement was induced within the four days of treatment, as evidenced by increased osteoclast and monocyte activity in the periodontal ligament as well as by µCT analysis. Contrast enhancement was increased at the orthodontically-treated side distally of the moved upper first left molar, indicating increased vascularization at the tension side of the periodontal ligament. Accordingly, we detected reduced time-to-peak and washout rates. Our study using MRI to directly assess local vascularization thus seems to confirm the hypothesis that perfusion is enhanced in tension zones of the periodontal ligament during orthodontic tooth movement.
Collapse
Affiliation(s)
- Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Lisa Seyler
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Franziska Wolf
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Tobias Bäuerle
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Lina Gölz
- Department of Orthodontics, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| |
Collapse
|
12
|
Nakornnoi T, Leethanakul C, Samruajbenjakun B. Effects of Leukocyte-Platelet-Rich Plasma on the Alveolar Bone Changes During Orthodontic Tooth Movement in Rabbits: A Micro-CT Study. JOURNAL OF INDIAN ORTHODONTIC SOCIETY 2019. [DOI: 10.1177/0301574219872608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To investigate the effects of leukocyte-platelet-rich plasma (L-PRP) on the alveolar bone changes at the compression and tension sides during orthodontic tooth movement. Materials and Methods: Around 20 New Zealand white rabbits were used in a split-mouth design. The maxillary first premolar was moved mesially with a nickel-titanium closed-coil spring. One side of the maxilla was randomly injected with L-PRP, while the contralateral side served as the control which received normal saline. The alveolar bone adjacent to the maxillary first premolar was scanned using microcomputed tomography at days 0, 7, 14, and 28. Microstructural parameters including bone volume fraction, trabecular thickness, and trabecular separation of alveolar bone were assessed on the compression and tension sides of the maxillary first premolar. Results: Compared between the groups, the L-PPR group showed a significantly decreased bone volume fraction on the compression side on days 7 and 14 but significantly increased bone volume fraction on the tension side on day 14. However, there were no statistically significant differences in the parameters of trabecular thickness and trabecular separation. Conclusion: Local administration of L-PRP may promote bone resorption on the compression side and bone formation on the tension side at the initial stage of orthodontic tooth movement.
Collapse
Affiliation(s)
- Theerasak Nakornnoi
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Bancha Samruajbenjakun
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|