1
|
Zhang S, Wang M, Wang X, Song J, Yang X. Electrocatalysis in MOF Films for Flexible Electrochemical Sensing: A Comprehensive Review. BIOSENSORS 2024; 14:420. [PMID: 39329795 PMCID: PMC11430114 DOI: 10.3390/bios14090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications. We systematically categorize the design and fabrication techniques used in preparing MOF films, including in situ growth, layer-by-layer assembly, and polymer-assisted strategies. The implications of MOF-based flexible electrochemical sensors are examined in the context of wearable devices, environmental monitoring, and healthcare diagnostics. Future research is anticipated to shift from traditional microcrystalline powder synthesis to MOF thin-film deposition, which is expected to not only enhance the performance of MOFs in flexible electronics but also improve sensing efficiency and reliability, paving the way for more robust and versatile sensor technologies.
Collapse
Affiliation(s)
- Suyuan Zhang
- Sinopec (Shanghai) Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201210, China
| | - Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Rutkowska KA, Sobotka P, Grom M, Baczyński S, Juchniewicz M, Marchlewicz K, Dybko A. A Novel Approach for the Creation of Electrically Controlled LC:PDMS Microstructures. SENSORS (BASEL, SWITZERLAND) 2022; 22:4037. [PMID: 35684658 PMCID: PMC9185514 DOI: 10.3390/s22114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
This work presents research on unique optofluidic systems in the form of air channels fabricated in PDMS and infiltrated with liquid crystalline material. The proposed LC:PDMS structures represent an innovative solution due to the use of microchannel electrodes filled with a liquid metal alloy. The latter allows for the easy and dynamic reconfiguration of the system and eliminates technological issues experienced by other research groups. The paper discusses the design, fabrication, and testing methods for tunable LC:PDMS structures. Particular emphasis was placed on determining their properties after applying an external electric field, depending on the geometrical parameters of the system. The conclusions of the performed investigations may contribute to the definition of guidelines for both LC:PDMS devices and a new class of potential sensing elements utilizing polymers and liquid crystals in their structures.
Collapse
Affiliation(s)
- Katarzyna A. Rutkowska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Piotr Sobotka
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Monika Grom
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Szymon Baczyński
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Marcin Juchniewicz
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Kasper Marchlewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (K.M.); (A.D.)
| | - Artur Dybko
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (K.M.); (A.D.)
| |
Collapse
|
3
|
Oh HS, Lee CH, Kim NK, An T, Kim GH. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers (Basel) 2021; 13:2478. [PMID: 34372081 PMCID: PMC8347500 DOI: 10.3390/polym13152478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients' quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.
Collapse
Affiliation(s)
- Hyeon Seok Oh
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Chung Hyeon Lee
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Na Kyoung Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Taechang An
- Department of Mechanical & Robotics Engineering, Andong National University (ANU), 1375, Gyeong-dong-ro, Andong-si 36729, Gyeongsangbuk-do, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| |
Collapse
|
4
|
Yu J, Ling W, Li Y, Ma N, Wu Z, Liang R, Pan H, Liu W, Fu B, Wang K, Li C, Wang H, Peng H, Ning B, Yang J, Huang X. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005925. [PMID: 33372299 DOI: 10.1002/smll.202005925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Optical fibers made of polymeric materials possess high flexibility that can potentially integrate with flexible electronic devices to realize complex functions in biology and neurology. Here, a multichannel flexible device based on four individually addressable optical fibers transfer-printed with flexible electronic components and controlled by a wireless circuit is developed. The resulting device offers excellent mechanics that is compatible with soft and curvilinear tissues, and excellent diversity through switching different light sources. The combined configuration of optical fibers and flexible electronics allows optical stimulation in selective wavelengths guided by the optical fibers, while conducting distributed, high-throughput biopotential sensing using the flexible microelectrode arrays. The device has been demonstrated in vivo with rats through optical stimulation and simultaneously monitoring of spontaneous/evoked spike signals and local field potentials using 32 microelectrodes in four brain regions. Biocompatibility of the device has been characterized by behavior and immunohistochemistry studies, demonstrating potential applications of the device in long-term animal studies. The techniques to integrate flexible electronics with optical fibers may inspire the development of more flexible optoelectronic devices for sophisticated applications in biomedicine and biology.
Collapse
Affiliation(s)
- Jingxian Yu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ning Ma
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Huizhuo Pan
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wentao Liu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Bo Fu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Kun Wang
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Chenxi Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Jiajia Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Zhejiang, Jiaxing, 314006, China
| |
Collapse
|
5
|
Yin J, Gao W, Zhang Z, Mai Y, Luan A, Jin H, Jian J, Jin Q. Batch microfabrication of highly integrated silicon-based electrochemical sensor and performance evaluation via nitrite water contaminant determination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Advances in Materials for Recent Low-Profile Implantable Bioelectronics. MATERIALS 2018; 11:ma11040522. [PMID: 29596359 PMCID: PMC5951368 DOI: 10.3390/ma11040522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities.
Collapse
|
7
|
Han ST, Peng H, Sun Q, Venkatesh S, Chung KS, Lau SC, Zhou Y, Roy VAL. An Overview of the Development of Flexible Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700375. [PMID: 28671711 DOI: 10.1002/adma.201700375] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/28/2017] [Indexed: 05/21/2023]
Abstract
Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field.
Collapse
Affiliation(s)
- Su-Ting Han
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qijun Sun
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Shishir Venkatesh
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Kam-Sing Chung
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Siu Chuen Lau
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - V A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| |
Collapse
|
8
|
Yan S, Zhang X, Dai X, Feng X, Du W, Liu BF. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33457-33463. [PMID: 27960420 DOI: 10.1021/acsami.6b11673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The circulating tumor cells (CTCs), originating from the primary tumor, play a vital role in cancer diagnosis, prognosis, disease monitoring, and precise therapy. However, the CTCs are extremely rare in the peripheral bloodstream and hard to be isolated. To overcome current limitations associated with CTC capture and analysis, the strategy incorporating nanostructures with microfluidic devices receives wide attention. Here, we demonstrated a three-dimensional microfluidic device (Rm-chip) for capturing cancer cells with high efficiency by integrating a novel hierarchical structure, the "Rhipsalis (Cactaceae)"-like micropillar array, into the Rm-chip. The PDMS micropillar array was fabricated by soft-lithography and rapid prototyping method, which was then conformally plated with a thin gold layer through electroless plating. EpCAM antibody was modified onto the surface of the micropillars through the thiol-oligonucleotide linkers in order to release captured cancer cells by DNase I treatment. The antibody-functionalized device achieved an average capture efficiency of 88% in PBS and 83.7% in whole blood samples. We believe the Rm-chip provided a convenient, economical, and versatile approach for cell analysis with wide potential applications.
Collapse
Affiliation(s)
- Shuangqian Yan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xian Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaofang Dai
- Cancer Center, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
9
|
Affiliation(s)
- Bo Shen
- Department of Chemistry and ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongkai Wu
- Department of Chemistry and ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Effects of Fumed and Mesoporous Silica Nanoparticles on the Properties of Sylgard 184 Polydimethylsiloxane. MICROMACHINES 2015. [DOI: 10.3390/mi6070855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wu J, Wang R, Yu H, Li G, Xu K, Tien NC, Roberts RC, Li D. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. LAB ON A CHIP 2015; 15:690-5. [PMID: 25412449 DOI: 10.1039/c4lc01121j] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic systems based on polydimethylsiloxane (PDMS) have gained popularity in recent years. However, microelectrode patterning on PDMS to form biosensors in microchannels remains a worldwide technical issue due to the hydrophobicity of PDMS and its weak adhesion to metals. In this study, an additive technique using inkjet-printed silver nanoparticles to form microelectrodes on PDMS is presented. (3-Mercaptopropyl)trimethoxysilane (MPTMS) was used to modify the surface of PDMS to improve its surface wettability and its adhesion to silver. The modified surface of PDMS is rendered relatively hydrophilic, which is beneficial for the silver droplets to disperse and thus effectively avoids the coalescence of adjacent droplets. Additionally, a multilevel matrix deposition (MMD) method is used to further avoid the coalescence and yield a homogeneous pattern on the MPTMS-modified PDMS. A surface wettability comparison and an adhesion test were conducted. The resulting silver pattern exhibited good uniformity, conductivity and excellent adhesion to PDMS. A three-electrode electrochemical biosensor was fabricated successfully using this method and sealed in a PDMS microchannel, forming a lab-on-a-chip glucose biosensing system.
Collapse
Affiliation(s)
- Jianwei Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun Y, He K, Zhang Z, Zhou A, Duan H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron 2015; 68:358-364. [PMID: 25603401 DOI: 10.1016/j.bios.2015.01.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages.
Collapse
Affiliation(s)
- Yimin Sun
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kui He
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China
| | - Zefen Zhang
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China
| | - Aijun Zhou
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China.
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
13
|
Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, Xiao F. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta 2014; 853:200-206. [PMID: 25467459 DOI: 10.1016/j.aca.2014.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 01/07/2023]
Abstract
Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires-graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2-ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1-45.4 mM, with a detection limit of 10 μM (S/N=3) and detection sensitivity of 59.0 μA cm(-2) mM(-1). These outstanding sensing performances enable the practical application of MnO2-ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Jiangbo Xi
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yanan Wu
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hongwei Liu
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Chaoyang Fu
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hongfang Liu
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Fei Xiao
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Liang B, Fang L, Hu Y, Yang G, Zhu Q, Ye X. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres. NANOSCALE 2014; 6:4264-4274. [PMID: 24615460 DOI: 10.1039/c3nr06057h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m(-1). During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □(-1) with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H₂O₂ electrode with a sensitivity of 0.56 mA mM(-1) cm(-2), a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM(-1) cm(-2) and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.
Collapse
Affiliation(s)
- Bo Liang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Cyrus Tang Centre for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, PR China.
| | | | | | | | | | | |
Collapse
|
15
|
Vinod TP, Jelinek R. Nonplanar conductive surfaces via "bottom-up" nanostructured gold coating. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3341-3346. [PMID: 24548243 DOI: 10.1021/am4053656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Development of technologies for the construction of bent, curved, and flexible conductive surfaces is among the most important albeit challenging goals in the promising field of "flexible electronics". We present a generic solution-based "bottom-up" approach for assembling conductive gold nanostructured layers on nonplanar polymer surfaces. The simple two-step experimental scheme is based upon incubation of an amine-displaying polymer [the abundantly used poly(dimethylsiloxane) (PDMS), selected here as a proof of concept] with Au(SCN)4(-), followed by a brief treatment with a conductive polymer [poly(3,4-thylenedioxythiophene)/poly(styrenesulfonate)] solution. Importantly, no reducing agent is co-added to the gold complex solution. The resultant surfaces are conductive and exhibit a unique "nanoribbon" gold morphology. The scheme yields conductive layers upon PDMS in varied configurations: planar, "wrinkled", and mechanically bent surfaces. The technology is simple, inexpensive, and easy to implement for varied polymer surfaces (and other substances), opening the way for practical applications in flexible electronics and related fields.
Collapse
Affiliation(s)
- T P Vinod
- Ilse Katz Institute for Nanoscale Science and Technology and Department of Chemistry, Ben Gurion University of the Negev , Beer Sheva 8410, Israel
| | | |
Collapse
|
16
|
Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Biosens Bioelectron 2014; 51:97-102. [DOI: 10.1016/j.bios.2013.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/06/2013] [Accepted: 07/12/2013] [Indexed: 12/26/2022]
|
17
|
KANNO Y, GOTO T, INO K, INOUE KY, TAKAHASHI Y, SHIKU H, MATSUE T. SU-8-based Flexible Amperometric Device with IDA Electrodes to Regenerate Redox Species in Small Spaces. ANAL SCI 2014; 30:305-9. [DOI: 10.2116/analsci.30.305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yusuke KANNO
- Graduate School of Environmental Studies, Tohoku University
| | - Takehito GOTO
- Graduate School of Environmental Studies, Tohoku University
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| | - Kumi Y. INOUE
- Graduate School of Environmental Studies, Tohoku University
| | | | - Hitoshi SHIKU
- Graduate School of Environmental Studies, Tohoku University
| | - Tomokazu MATSUE
- Graduate School of Environmental Studies, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
| |
Collapse
|
18
|
Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 2013; 49:492-8. [PMID: 23811484 DOI: 10.1016/j.bios.2013.05.061] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 01/14/2023]
Abstract
In this study, a low-cost and robust impedimetric immunosensor based on gold nanoparticles modified free-standing graphene paper electrode for rapid and sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) was developed. Graphene paper was prepared by chemical reduction of graphene oxide paper obtained from vacuum filtration method. Scanning electron microscope, Raman spectroscopy and X-ray diffraction techniques were employed to investigate the surface morphology and crystal structure of the prepared graphene paper. The gold nanoparticles were grown on the surface of graphene paper electrode by one-step electrodeposition technique. The immobilization of anti-E. coli O157:H7 antibodies on paper electrode were performed via biotin-streptavidin system. Electrochemical impedance spectroscopy was used to detect E. coli O157:H7 captured on the paper electrode. Results show that the developed paper immunosensor possesses greatly enhanced sensing performance, such as wide linear range (1.5 × 10(2)-1.5 × 10(7) cfu mL(-1)), low detection limit (1.5 × 10(2) cfu mL(-1)), and excellent specificity. Furthermore, flexible test demonstrate the graphene paper based sensing device has high tolerability to mechanical stress. The strategy of structurally integrating metal nanomaterials, graphene paper, and biorecognition molecules would provide new insight into design of flexible immunosensors for routine sensing applications.
Collapse
|
19
|
Xiao F, Li Y, Gao H, Ge S, Duan H. Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens Bioelectron 2013; 41:417-23. [DOI: 10.1016/j.bios.2012.08.062] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/13/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
|
20
|
Scavetta E, Solito AG, Demelas M, Cosseddu P, Bonfiglio A. Electrochemical characterization of self assembled monolayers on flexible electrodes. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Xu Q, Bi L, Zheng H, Fan D, Wang W. PDMS-based gold electrode for sensing ascorbic acid. Colloids Surf B Biointerfaces 2011; 88:362-5. [DOI: 10.1016/j.colsurfb.2011.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/10/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022]
|