1
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Luo X, Yang L, Cui Y. Microneedles: materials, fabrication, and biomedical applications. Biomed Microdevices 2023; 25:20. [PMID: 37278852 PMCID: PMC10242236 DOI: 10.1007/s10544-023-00658-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 06/07/2023]
Abstract
The microneedles have attracted great interests for a wide range of transdermal biomedical applications, such as biosensing and drug delivery, due to the advantages of being painless, semi-invasive, and sustainable. The ongoing challenges are the materials and fabrication methods of the microneedles in order to obtain a specific shape, configuration and function of the microneedles to achieve a target biomedical application. Here, this review would introduce the types of materials of the microneedles firstly. The hardness, Young's modulus, geometric structure, processability, biocompatibility and degradability of the microneedles are explored as well. Then, the fabrication methods for the solid and hollow microneedles in recent years are reviewed in detail, and the advantages and disadvantages of each process are analyzed and compared. Finally, the biomedical applications of the microneedles are reviewed, including biosensing, drug delivery, body fluid extraction, and nerve stimulation. It is expected that this work provides the fundamental knowledge for developing new microneedle devices, as well as the applications in a variety of biomedical fields.
Collapse
Affiliation(s)
- Xiaojin Luo
- School of Materials Science and Engineering, Peking University, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, People's Republic of China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
4
|
Herrero P, Wilson RC, Armiger R, Roberts JA, Holmes A, Georgiou P, Rawson TM. Closed-loop control of continuous piperacillin delivery: An in silico study. Front Bioeng Biotechnol 2022; 10:1015389. [DOI: 10.3389/fbioe.2022.1015389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective: Sub-therapeutic dosing of piperacillin-tazobactam in critically-ill patients is associated with poor clinical outcomes and may promote the emergence of drug-resistant infections. In this paper, an in silico investigation of whether closed-loop control can improve pharmacokinetic-pharmacodynamic (PK-PD) target attainment is described.Method: An in silico platform was developed using PK data from 20 critically-ill patients receiving piperacillin-tazobactam where serum and tissue interstitial fluid (ISF) PK were defined. Intra-day variability on renal clearance, ISF sensor error, and infusion constraints were taken into account. Proportional-integral-derivative (PID) control was selected for drug delivery modulation. Dose adjustment was made based on ISF sensor data with a 30-min sampling period, targeting a serum piperacillin concentration between 32 and 64 mg/L. A single tuning parameter set was employed across the virtual population. The PID controller was compared to standard therapy, including bolus and continuous infusion of piperacillin-tazobactam.Results: Despite significant inter-subject and simulated intra-day PK variability and sensor error, PID demonstrated a significant improvement in target attainment compared to traditional bolus and continuous infusion approaches.Conclusion: A PID controller driven by ISF drug concentration measurements has the potential to precisely deliver piperacillin-tazobactam in critically-ill patients undergoing treatment for sepsis.
Collapse
|
5
|
Rahimi Sardo F, Rayegani A, Matin Nazar A, Balaghiinaloo M, Saberian M, Mohsan SAH, Alsharif MH, Cho HS. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. BIOSENSORS 2022; 12:697. [PMID: 36140082 PMCID: PMC9496147 DOI: 10.3390/bios12090697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/22/2022]
Abstract
Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently advanced. Following a brief introduction of the fundamentals of triboelectric nanogenerators, we describe implantable and wearable self-powered sensors powered by triboelectric nanogenerators. Moreover, we examine the constraints limiting the practical uses of self-powered devices.
Collapse
Affiliation(s)
- Fatemeh Rahimi Sardo
- Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Arash Rayegani
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, Tehran 1458889694, Iran
| | | | | | | | | | - Mohammed H. Alsharif
- Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, Seoul 05006, Korea
| | - Ho-Shin Cho
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Serchenya TS, Harbachova IV, Sviridov OV. Direct Conjugation of Penicillins and Cephalosporins with Proteins for Receptor Assays of Beta-Lactam Antibiotics. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—
Fifteen protein conjugates of penicillins and cephalosporins containing amino- and/or carboxylic groups in the initial structures have been synthesized in the reactions with human serum albumin or ovalbumin using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) or a combination of EDC and N-hydroxysulfosuccinimide at various ratios of the base reagents. A comparative study of conjugates composition and properties has been carried out by UV spectroscopy, mass spectrometry and a ligand-receptor assay. It was shown that the antibiotic residue content of the macromolecules obtained varied from 1 to 22, the beta-lactam cycle remained intact assuring specific interactions of the conjugates with a penicillin-binding protein. In two developed models of receptor bioanalytic systems, an ampicillin conjugate onto a solid phase binds to penicillin-binding protein complexed with a monoclonal antibody, which was detected by an immunoenzyme label in microplate wells or gold nanoparticles on test strips. Conjugated ampicillin binding to the receptor was competitively inhibited by beta-lactam antibiotics added to the liquid phase, and analytical sensitivities relative to penicillin G were 0.05 and 1 ng/mL for microplate and receptor chromatographic systems, respectively.
Collapse
|
7
|
Ates HC, Mohsenin H, Wenzel C, Glatz RT, Wagner HJ, Bruch R, Hoefflin N, Spassov S, Streicher L, Lozano‐Zahonero S, Flamm B, Trittler R, Hug MJ, Köhn M, Schmidt J, Schumann S, Urban GA, Weber W, Dincer C. Biosensor-Enabled Multiplexed On-Site Therapeutic Drug Monitoring of Antibiotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104555. [PMID: 34545651 PMCID: PMC11468941 DOI: 10.1002/adma.202104555] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Indexed: 05/20/2023]
Abstract
Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point-of-care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody-free assay for on-site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood-based POCT is further illustrated by tracking ß-lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low-cost, sample-independent, and multiplexed on-site TDM, this system can shift the paradigm of "one-size-fits-all" strategy.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Hasti Mohsenin
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Christin Wenzel
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Regina T. Glatz
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Hanna J. Wagner
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
| | - Richard Bruch
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| | - Nico Hoefflin
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Sashko Spassov
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Lea Streicher
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Sara Lozano‐Zahonero
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Bernd Flamm
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Rainer Trittler
- Department of PharmacyMedical Center – University of FreiburgHugstetter Straße 5579106FreiburgGermany
| | - Martin J. Hug
- Department of PharmacyMedical Center – University of FreiburgHugstetter Straße 5579106FreiburgGermany
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Johannes Schmidt
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Stefan Schumann
- Department of Anesthesiology and Critical CareFaculty of MedicineMedical Center – University of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Gerald A. Urban
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchaenzlestrasse 1879104FreiburgGermany
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Koehler‐Allee 10579110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)Laboratory for SensorsUniversity of FreiburgGeorges‐Koehler‐Allee 10379110FreiburgGermany
| |
Collapse
|
8
|
Optimizing antimicrobial use: challenges, advances and opportunities. Nat Rev Microbiol 2021; 19:747-758. [PMID: 34158654 DOI: 10.1038/s41579-021-00578-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
An optimal antimicrobial dose provides enough drug to achieve a clinical response while minimizing toxicity and development of drug resistance. There can be considerable variability in pharmacokinetics, for example, owing to comorbidities or other medications, which affects antimicrobial pharmacodynamics and, thus, treatment success. Although current approaches to antimicrobial dose optimization address fixed variability, better methods to monitor and rapidly adjust antimicrobial dosing are required to understand and react to residual variability that occurs within and between individuals. We review current challenges to the wider implementation of antimicrobial dose optimization and highlight novel solutions, including biosensor-based, real-time therapeutic drug monitoring and computer-controlled, closed-loop control systems. Precision antimicrobial dosing promises to improve patient outcome and is important for antimicrobial stewardship and the prevention of antimicrobial resistance.
Collapse
|
9
|
Teymourian H, Tehrani F, Mahato K, Wang J. Lab under the Skin: Microneedle Based Wearable Devices. Adv Healthc Mater 2021; 10:e2002255. [PMID: 33646612 DOI: 10.1002/adhm.202002255] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Indexed: 12/12/2022]
Abstract
While the current smartwatches and cellphones can readily track mobility and vital signs, a new generation of wearable devices is rapidly developing to enable users to monitor their health parameters at the molecular level. Within this emerging class of wearables, microneedle-based transdermal sensors are in a prime position to play a key role in synergizing the significant advantages of dermal interstitial fluid (ISF) as a rich source of clinical indicators and painless skin pricking to allow the collection of real-time diagnostic information. While initial efforts of microneedle sensing focused on ISF extraction coupled with either on-chip analysis or off-chip instrumentation, the latest trend has been oriented toward assembling electrochemical biosensors on the tip of microneedles to allow direct continuous chemical measurements. In this context, significant advances have recently been made in exploiting microneedle-based devices for real-time monitoring of various metabolites, electrolytes, and therapeutics and toward the simultaneous multiplexed detection of key chemical markers; yet, there are several grand challenges that still exist. In this review, we outline current progress, recent trends, and new capabilities of microneedle-empowered sensors, along with the current unmet challenges and a future roadmap toward transforming the latest innovations in the field to commercial products.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Farshad Tehrani
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Kuldeep Mahato
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
10
|
Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 2021; 11:2344-2361. [PMID: 34150486 PMCID: PMC8206489 DOI: 10.1016/j.apsb.2021.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.
Collapse
Key Words
- AC, alternating current
- APCs, antigen-presenting cells
- ASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users
- Biomarker detection
- Biosensor
- CMOS, complementary metal-oxide semiconductor
- COVID, coronavirus disease
- COVID-19
- CSF, cerebrospinal fluid
- CT, computerised tomography
- CV, cyclic voltammetry
- DC, direct current
- DNA, deoxyribonucleic acid
- DPV, differential pulse voltammetry
- EBV, Epstein–Barr virus
- EDC/NHS, 1-ethyl-3-(3-dimethylaminoproply) carbodiimide/N-hydroxysuccinimide
- ELISA, enzyme-linked immunosorbent assay
- GOx, glucose oxidase
- HIV, human immunodeficiency virus
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- IP, iontophoresis
- ISF, interstitial fluid
- IgG, immunoglobulin G
- Infectious disease
- JEV, Japanese encephalitis virus
- MN, microneedle
- Microneedle
- NA, nucleic acid
- OBMT, one-touch-activated blood multidiagnostic tool
- OPD, o-phenylenediamine
- PCB, printed circuit board
- PCR, polymerase chain reaction
- PDMS, polydimethylsiloxane
- PEDOT, poly(3,4-ethylenedioxythiophene)
- PNA, peptide nucleic acid
- PP, polyphenol
- PPD, poly(o-phenylenediamine)
- PoC, point-of-care
- Point-of-care diagnostics (PoC)
- SALT, skin-associated lymphoid tissue
- SAM, self-assembled monolayer
- SEM, scanning electron microscope
- SERS, surface-enhanced Raman spectroscopy
- SWV, square wave voltammetry
- Skin
- TB, tuberculosis
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- WHO, World Health Organisation
- cfDNA, cell-free deoxyribonucleic acid
Collapse
Affiliation(s)
- Rachael V. Dixon
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Eldhose Skaria
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip Manning
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mark A. Birch-Machin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - S. Moein Moghimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
11
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
12
|
García-Guzmán JJ, Pérez-Ràfols C, Cuartero M, Crespo GA. Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. BIOSENSORS 2020; 10:E205. [PMID: 33333888 PMCID: PMC7765261 DOI: 10.3390/bios10120205] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in lab-on-a-chip technology establish solid foundations for wearable biosensors. These newly emerging wearable biosensors are capable of non-invasive, continuous monitoring by miniaturization of electronics and integration with microfluidics. The advent of flexible electronics, biochemical sensors, soft microfluidics, and pain-free microneedles have created new generations of wearable biosensors that explore brand-new avenues to interface with the human epidermis for monitoring physiological status. However, these devices are relatively underexplored for sports monitoring and analytics, which may be largely facilitated by the recent emergence of wearable biosensors characterized by real-time, non-invasive, and non-irritating sensing capacities. Here, we present a systematic review of wearable biosensing technologies with a focus on materials and fabrication strategies, sampling modalities, sensing modalities, as well as key analytes and wearable biosensing platforms for healthcare and sports monitoring with an emphasis on sweat and interstitial fluid biosensing. This review concludes with a summary of unresolved challenges and opportunities for future researchers interested in these technologies. With an in-depth understanding of the state-of-the-art wearable biosensing technologies, wearable biosensors for sports analytics would have a significant impact on the rapidly growing field-microfluidics for biosensing.
Collapse
Affiliation(s)
- Shun Ye
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
- Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Huang
- School of Instrument Science and Opto–Electronics Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Shengtai Bian
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
14
|
Simmons MD, Miller LM, Sundström MO, Johnson S. Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics (Basel) 2020; 9:E655. [PMID: 33003560 PMCID: PMC7601551 DOI: 10.3390/antibiotics9100655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics in health care has led to increasing levels of drug resistant infections (DRI's) occurring in the general population. Most technologies developed for the detection of DRI's typically focus on phenotyping or genotyping bacterial resistance rather than on the underlying cause and spread of DRI's; namely the misuse of antibiotics. An aptameric based assay has been developed for the monitoring of ampicillin in urine samples, for use in determining optimal antibiotic dosage and monitoring patient compliance with treatment. The fluorescently labelled aptamers were shown to perform optimally at pH 7, ideal for buffered clinical urine samples, with limits of detection as low as 20.6 nM, allowing for determination of ampicillin in urine in the clinically relevant range of concentrations (100 nM to 100 µM). As the assay requires incubation for only 1 h with a small sample volume, 50 to 150 µL, the test would fit within current healthcare pathways, simplifying the adoption of the technology.
Collapse
Affiliation(s)
- Matthew D. Simmons
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Lisa M. Miller
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Malin O. Sundström
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York, North Yorkshire YO10 5DD, UK;
| |
Collapse
|
15
|
Madden J, O'Mahony C, Thompson M, O'Riordan A, Galvin P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100348] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in Antimicrobial Microneedle Patches for Combating Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002129. [PMID: 32602146 DOI: 10.1002/adma.202002129] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Indexed: 05/22/2023]
Abstract
Skin infections caused by bacteria, viruses and fungi are difficult to treat by conventional topical administration because of poor drug penetration across the stratum corneum. This results in low bioavailability of drugs to the infection site, as well as the lack of prolonged release. Emerging antimicrobial transdermal and ocular microneedle patches have become promising medical devices for the delivery of various antibacterial, antifungal, and antiviral therapeutics. In the present review, skin anatomy and its barriers along with skin infection are discussed. Potential strategies for designing antimicrobial microneedles and their targeted therapy are outlined. Finally, biosensing microneedle patches associated with personalized drug therapy and selective toxicity toward specific microbial species are discussed.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, P. R. China
| | - Ehsan N Zare
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples, 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran
| |
Collapse
|
17
|
Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020; 38:1262-1277. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advances have stimulated efforts to bring personalized medicine into practice. Yet, traditional application fields like therapeutic drug monitoring (TDM) have remained rather under-appreciated. Owing to clear dose-response relationships, TDM could improve patient outcomes and reduce healthcare costs. While chromatography-based routine practices are restricted due to high costs and turnaround times, biosensors overcome these limitations by offering on-site analysis. Nevertheless, sensor-based approaches have yet to break through for clinical TDM applications, due to the gap between scientific and clinical communities. We provide a critical overview of current TDM practices, followed by a TDM guideline to establish a common ground across disciplines. Finally, we discuss how the translation of sensor systems for TDM can be facilitated, by highlighting the challenges and opportunities.
Collapse
Affiliation(s)
- H Ceren Ates
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany
| | - Jason A Roberts
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, 4102, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Jeffrey Lipman
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Gerald A Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Centre - FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Can Dincer
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany. @imtek.de
| |
Collapse
|
18
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
19
|
Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. LANCET DIGITAL HEALTH 2019; 1:e335-e343. [DOI: 10.1016/s2589-7500(19)30131-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
20
|
Howells O, Rajendran N, Mcintyre S, Amini-Asl S, Henri P, Liu Y, Guy O, Cass AEG, Morris MC, Sharma S. Microneedle Array-Based Platforms for Future Theranostic Applications. Chembiochem 2019; 20:2198-2202. [PMID: 30897259 DOI: 10.1002/cbic.201900112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 11/06/2022]
Abstract
Theranostics involves finding the biomarkers of a disease, fighting them through site specific drug delivery and following them for prognosis of the disease. Microneedle array technology has been used for drug delivery and extended for continuous monitoring of analytes present in the skin compartment. We envisage the use of microneedle arrays for future theranostic applications. The potential of combining microneedle array-based drug delivery and diagnostics as part of closed-loop control system for the management of diseases and delivery of precision drugs in individual patients is reported in this paper.
Collapse
Affiliation(s)
- Olivia Howells
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK
| | - Natasha Rajendran
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK
| | - Sarah Mcintyre
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK
| | - Sara Amini-Asl
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK
| | - Pauline Henri
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Faculté de Pharmacie, 34093, Montpellier, France
| | - Yufei Liu
- Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R China
| | - Owen Guy
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK.,Department of Chemistry, Swansea University, Singleton Campus, Swansea, SA2 8EN, UK
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - May C Morris
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Faculté de Pharmacie, 34093, Montpellier, France
| | - Sanjiv Sharma
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Bay Campus, Swansea, SA1 8EN, UK
| |
Collapse
|
21
|
Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid. Catalysts 2019. [DOI: 10.3390/catal9070580] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, we present the first highly porous gold (h-PG) microneedles-based second-generation biosensor for minimally invasive monitoring of glucose in artificial interstitial fluid (ISF). A highly porous microneedles-based electrode was prepared by a simple electrochemical self-templating method that involves two steps, gold electrodeposition and hydrogen bubbling at the electrode, which were realized by applying a potential of −2 V versus a saturated calomel electrode (SCE). The highly porous gold surface of the microneedles was modified by immobilization of 6-(ferrocenyl)hexanethiol (FcSH) as a redox mediator and subsequently by immobilization of a flavin adenine dinucleotide glucose dehydrogenase (FAD-GDH) enzyme using a drop-casting method. The microneedles-based FcSH/FAD-GDH biosensor allows for the detection of glucose in artificial interstitial fluid with an extended linear range (0.1–10 mM), high sensitivity (50.86 µA cm−2 mM−1), stability (20% signal loss after 30 days), selectivity (only ascorbic acid showed a response about 10% of glucose signal), and a short response time (3 s). These properties were favourably compared to other microneedles-based glucose biosensors reported in the literature. Finally, the microneedle-arrays-based second-generation biosensor for glucose detection was tested in artificial interstitial fluid opportunely spiked with different concentrations of glucose (simulating healthy physiological conditions while fasting and after lunch) and by placing the electrode into a simulated chitosan/agarose hydrogel skin model embedded in the artificial ISF (continuous glucose monitoring). The obtained current signals had a lag-time of about 2 min compared to the experiments in solution, but they fit perfectly into the linearity range of the biosensor (0.1–10 mM). These promising results show that the proposed h-PG microneedles-based sensor could be used as a wearable, disposable, user-friendly, and automated diagnostic tool for diabetes patients.
Collapse
|
22
|
Gowers SAN, Freeman DME, Rawson TM, Rogers ML, Wilson RC, Holmes AH, Cass AE, O’Hare D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens 2019; 4:1072-1080. [PMID: 30950598 DOI: 10.1021/acssensors.9b00288] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance poses a global threat to patient health. Improving the use and effectiveness of antimicrobials is critical in addressing this issue. This includes optimizing the dose of antibiotic delivered to each individual. New sensing approaches that track antimicrobial concentration for each patient in real time could allow individualized drug dosing. This work presents a potentiometric microneedle-based biosensor to detect levels of β-lactam antibiotics in vivo in a healthy human volunteer. The biosensor is coated with a pH-sensitive iridium oxide layer, which detects changes in local pH as a result of β-lactam hydrolysis by β-lactamase immobilized on the electrode surface. Development and optimization of the biosensor coatings are presented, giving a limit of detection of 6.8 μM in 10 mM PBS solution. Biosensors were found to be stable for up to 2 weeks at -20 °C and to withstand sterilization. Sensitivity was retained after application for 6 h in vivo. Proof-of-concept results are presented showing that penicillin concentrations measured using the microneedle-based biosensor track those measured using both discrete blood and microdialysis sampling in vivo. These preliminary results show the potential of this microneedle-based biosensor to provide a minimally invasive means to measure real-time β-lactam concentrations in vivo, representing an important first step toward a closed-loop therapeutic drug monitoring system.
Collapse
Affiliation(s)
- Sally A. N. Gowers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David M. E. Freeman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Timothy M. Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Michelle L. Rogers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard C. Wilson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Alison H. Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London W12 0NN, United Kingdom
| | - Anthony E. Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Bollella P, Sharma S, Cass AEG, Antiochia R. Minimally-invasive Microneedle-based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid. ELECTROANAL 2019. [DOI: 10.1002/elan.201800630] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies; Sapienza University of Rome; Rome Italy
| | - Sanjiv Sharma
- College of Engineering; Swansea University; Swansea Wales
| | | | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies; Sapienza University of Rome; Rome Italy
| |
Collapse
|
24
|
Rawson TM, Ming D, Gowers SA, Freeman DM, Herrero P, Georgiou P, Cass AE, O'Hare D, Holmes AH. Public acceptability of computer-controlled antibiotic management: An exploration of automated dosing and opportunities for implementation. J Infect 2018; 78:75-86. [PMID: 30099085 DOI: 10.1016/j.jinf.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
A paucity of data describing citizen perceptions of novel technologies, including those containing unsupervised computer-controlled systems is currently available. We explored citizen perceptions of using a microneedle biosensor and automated dose control system at a university public festival. Groups of citizens (from 2-6 people per group) attended a short demonstration of a microneedle biosensor and automated dosing system versus a traditional phlebotomy approach over a two-day public festival. Individual groups discussed and reached consensus on a number of short questions regarding their perceptions on the acceptability of such technology. Over the two days, 100 groups participated (56/100 day 1 and 44/100 day 2). The majority of individuals reported high acceptability of microneedle technology (median Likert score 9/10), but the majority believed that doctors should decide what dose of antibiotic is delivered (75/100; 75%). Groups concurred with the acceptability of microneedles to reduce blood tests and pain associated with them. However, concerns were reported over unsupervised computer-controlled programmes making decision about antibiotic dosing. This was driven by concerns over computer error and the inability of systems to contextualise decision making to the human and social context. Future work must consider the greater role of citizen engagement in the development of such technologies, to ensure their acceptability upon implementation in clinical practice.
Collapse
Affiliation(s)
- Timothy M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| | - Damien Ming
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Sally An Gowers
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - David Me Freeman
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Pau Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anthony E Cass
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alison H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
25
|
Rodriguez-Manzano J, Chia PY, Yeo TW, Holmes A, Georgiou P, Yacoub S. Improving Dengue Diagnostics and Management Through Innovative Technology. Curr Infect Dis Rep 2018; 20:25. [PMID: 29882167 PMCID: PMC5992235 DOI: 10.1007/s11908-018-0633-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Dengue continues to be a major global public health threat. Symptomatic infections can cause a spectrum of disease ranging from a mild febrile illness to severe and potentially life-threatening manifestations. Management relies on supportive treatment with careful fluid replacement. The purpose of this review is to define the unmet needs and challenges in current dengue diagnostics and patient monitoring and outline potential novel technologies to address these needs. RECENT FINDINGS There have been recent advances in molecular and point-of-care (POC) diagnostics as well as technologies including wireless communication, low-power microelectronics, and wearable sensors that have opened up new possibilities for management, clinical monitoring, and real-time surveillance of dengue. Novel platforms utilizing innovative technologies for POC dengue diagnostics and wearable patient monitors have the potential to revolutionize dengue surveillance, outbreak response, and management at population and individual levels. Validation studies of these technologies are urgently required in dengue-endemic areas.
Collapse
Affiliation(s)
- Jesus Rodriguez-Manzano
- Centre for Bio-inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Po Ying Chia
- Communicable Diseases Centre, Institute for Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- Communicable Diseases Centre, Institute for Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore, Singapore
| | - Alison Holmes
- Department of Medicine, Imperial College London, London, UK
| | - Pantelis Georgiou
- Centre for Bio-inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Sophie Yacoub
- Department of Medicine, Imperial College London, London, UK.
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, Ho Chi Minh City, Vietnam.
| |
Collapse
|
26
|
Herrero P, Rawson TM, Philip A, Moore LSP, Holmes AH, Georgiou P. Closed-Loop Control for Precision Antimicrobial Delivery: An In Silico Proof-of-Concept. IEEE Trans Biomed Eng 2017; 65:2231-2236. [PMID: 29989937 DOI: 10.1109/tbme.2017.2787423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Inappropriate dosing of patients with antibiotics is a driver of antimicrobial resistance, toxicity, and poor outcomes of therapy. In this paper, we investigate, in silico, the hypothesis that the use of a closed-loop control system could improve the attainment of pharmacokinetic-pharmacodynamic targets for antimicrobial therapy, where wide variations in target attainment have been reported. This includes patients in critical care, patients with renal disease, and patients with obesity. METHODS The presented in silico study focuses on vancomycin delivery, a first line therapy for Methicillin-resistant Staphylococcus aureus (MRSA) that has serious side effects, including nephrotoxicity. For this purpose, an in silico platform for the simulation of pharmacokinetics of vancomycin agents was developed including 24 virtual noncritically ill-adult subjects obtained from routinely collected data from two prospective audits of vancomycin therapy. Intraday variability on renal clearance, sensor error, and infusion constraints were taken into account. Proportional integral derivative (PID) controller was chosen because of its simplicity of implementation and satisfactory performance. RESULTS Even though significant intraday variability and sensor error were considered in the simulations, by assuming a minimum inhibitory concentration of 1 mg/l for MRSA, the proposed controller was able to reach the well-established therapeutic target of 24-h area under curve to minimum inhibitory concentration ratio equal to 400 $\text{mg} \cdot \text{h}\text{/}\text{l}$ for all the studied subjects, while staying significantly below toxic levels. CONCLUSION A PID controller has the potential to precisely deliver a vancomycin therapy in a noncritically ill-adult population. SIGNIFICANCE Closed-loop control for precision Vancomycin delivery can potentially reduce toxicity and poor therapeutic outcomes, as well as reduce antimicrobial resistance.
Collapse
|
27
|
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, Boutelle MG. Chemical Monitoring in Clinical Settings: Recent Developments toward Real-Time Chemical Monitoring of Patients. Anal Chem 2017; 90:2-18. [PMID: 29083872 DOI: 10.1021/acs.analchem.7b04224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marsilea A Booth
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Sally A N Gowers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Michelle L Rogers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Isabelle C Samper
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Aidan P Wickham
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Rodvold KA, Hope WW, Boyd SE. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol 2017; 36:114-123. [PMID: 29096171 DOI: 10.1016/j.coph.2017.09.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
Abstract
Bronchoalveolar lavage (BAL) and microdialysis have become the most reliable and relevant methods for measuring lung concentrations of antibiotics, with the majority of BAL studies involving either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Emphasis on the amount of drug that reaches the site of infection is increasingly recognized as necessary to determine whether a dose selection will translate to good clinical outcomes in the treatment of patients with pneumonia. Observed concentrations and/or parameters of exposure (e.g. area-under-the-curve) need to be incorporated with pharmacokinetic-pharmacodynamic indices so that rational dose selection can be identified for specific pathogens and types of pneumonic infection (community-acquired vs hospital-acquired bacterial pneumonia, including ventilator-associated bacterial pneumonia). Although having measured plasma or lung concentration-time data from critically ill patients to incorporate into pharmacokinetic-pharmacodynamic models is very unlikely during drug development, it is essential that altered distribution, augmented renal clearance, and renal or hepatic dysfunction should be considered. Notably, the number of published studies involving microdialysis and intrapulmonary penetration of antibiotics has been limited and mainly involve beta-lactam agents, levofloxacin, and fosfomycin. Opportunities to measure in high-resolution effect site spatial pharmacokinetics (e.g. with MALDI-MSI or PET imaging) and in vivo continuous drug concentrations (e.g. with aptamer-based probes) now exist. Going forward these studies could be incorporated into antibiotic development programs for pneumonia in order to further increase the probability of candidate success.
Collapse
Affiliation(s)
- Keith A Rodvold
- Colleges of Pharmacy and Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - William W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK; Division of Infectious Diseases & Immunity, Imperial College London, London, UK
| |
Collapse
|