1
|
Asserghine A, Ashrafi AM, Mukherjee A, Petrlak F, Heger Z, Svec P, Richtera L, Nagy L, Souto RM, Nagy G, Adam V. In Situ Investigation of the Cytotoxic and Interfacial Characteristics of Titanium When Galvanically Coupled with Magnesium Using Scanning Electrochemical Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43587-43596. [PMID: 34473486 DOI: 10.1021/acsami.1c10584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the cytotoxic properties of galvanically coupled Ti-Mg particles have been shown in different cells. This cytotoxic effect has been attributed mainly to Mg due to its tendency to undergo activation when coupled with Ti, forming a galvanic cell consisting of an anode (Mg) and a cathode (Ti). However, the role of the Ti cathode has been ignored in explaining the cytotoxic effect of Ti-Mg particles due to its high resistance to corrosion. In this work, the role of titanium (Ti) in the cytotoxic mechanism of galvanically coupled Ti-Mg particles was examined. A model galvanic cell (MGC) was prepared to simulate the Mg-Ti particles. The electrochemical reactivity of the Ti sample and the pH change in it due to galvanic coupling with Mg were investigated using scanning electrochemical microscopy (SECM). It was observed that the Ti surface changed from passive to electrochemically active when coupled with Mg. Furthermore, after only 15 min of galvanic coupling with Mg, the pH in the electrolyte volume adjacent to the Ti surface increased to an alkaline pH value. The effects of the galvanic coupling of Ti and Mg, as well as those of the alkaline pH environment, on the viability of Hs27 fibroblast cells were investigated. It was shown that the viability of Hs27 cells significantly diminished when Mg and Ti were galvanically coupled compared to when the two metals were electrically disconnected. Thus, although Ti usually exhibited high corrosion resistance when exposed to physiological environments, an electrochemically active surface was observed when galvanically coupled with Mg, and this surface may participate in electron transfer reactions with chemical species in the neighboring environment; this participation resulted in the increased pH values above its surface and enhanced generation of reactive oxygen species. These features contributed to the development of cytotoxic effects by galvanically coupled Ti-Mg particles.
Collapse
Affiliation(s)
- Abdelilah Asserghine
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pecs, Ifjussg u. 6, Pecs 7624, Hungary
- Laboratoire Interfaces et Systemes Electrochimiques (LISE), Sorbonne Universite, CNRS, 4 Place Jussieu, Paris F-75005, France
| | - Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Livia Nagy
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pecs, Ifjussg u. 6, Pecs 7624, Hungary
- Janos Szentagothai Research Center, University of Pecs, Ifjusag u. 20, Pecs 7624, Hungary
| | - Ricardo M Souto
- Institute of Material Science and Nanotechnology, University of La Laguna, P.O. Box 456, La Laguna E-38200, Tenerife, Canary Islands, Spain
| | - Geza Nagy
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pecs, Ifjussg u. 6, Pecs 7624, Hungary
- Janos Szentagothai Research Center, University of Pecs, Ifjusag u. 20, Pecs 7624, Hungary
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
3
|
Mahdavi-Shakib A, Husremovic S, Ki S, Glynn J, Babb L, Sempel J, Stavrinoudis I, Arce-Ramos JM, Nelson R, Grabow LC, Schwartz TJ, Frederick BG, Austin RN. Titania surface chemistry and its influence on supported metal catalysts. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|