1
|
Pan L, Zhou S, Yang J, Fei T, Mao S, Fu L, Lin CT. 3D-printed electrodes for electrochemical detection of environmental analytes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39998890 DOI: 10.1039/d4ay02271h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Environmental monitoring faces increasing demands for rapid, sensitive, and cost-effective analytical methods to detect various pollutants. Three-dimensional (3D) printing technology has emerged as a transformative approach for fabricating electrochemical sensors, offering unprecedented flexibility in electrode design and potential for customization. This comprehensive review examines recent advances in 3D-printed electrochemical sensors for environmental analysis, focusing on manufacturing technologies, materials development, and surface modification strategies. We analyze various printing approaches, including fused deposition modeling, stereolithography, and selective laser melting, discussing their relative advantages and limitations for electrode fabrication. The review explores conductive materials development, from carbon-based composites to novel metal-containing filaments, and examines crucial surface modification techniques that enhance sensor performance. Key applications in environmental monitoring are evaluated, including the detection of heavy metals, pathogens, antibiotics, and organophosphates, with particular attention to analytical performance metrics and real-world applicability. Technical challenges are critically assessed, including limitations in printing resolution, material conductivity, and long-term stability. The review concludes by identifying promising research directions, such as the integration of advanced materials and the development of automated manufacturing processes, highlighting opportunities for improving sensor performance and commercial viability in environmental monitoring applications.
Collapse
Affiliation(s)
- Liangliang Pan
- College of Environment, Zhejiang University of Technology, Huzhou 313299, China
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shijing Zhou
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jiaying Yang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Tongyun Fei
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
2
|
Chávez M, Escarpa A. 3D-Printed Dual-Channel Flow-Through Miniaturized Devices with Dual In-Channel Electrochemical Detection. Anal Chem 2025; 97:2667-2677. [PMID: 39719375 PMCID: PMC11822736 DOI: 10.1021/acs.analchem.4c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Here, we present three-dimensional-printed dual-channel flow-through miniaturized devices (3Dd) with dual electrochemical detection (EDd) integrating two working electrodes each in an in-channel configuration (3Dd-EDd). Prussian Blue (PB) shell-gold nanoparticles ((PB)AuNP) core-based electrochemistry was chosen for selective hydrogen peroxide determination. 3Dd-EDd devices exhibited impress stability, identical intrachannel and interchannel electrochemical performances, and excellent interdevice precision with values under 9%, revealing the reliability of the design and fabrication of the devices. 3Dd-EDd enabled long-term reliable hydrogen peroxide determination at physiological pH in Caco-2 cells under prooxidant stimulation demonstrating its outstanding electroanalytical performance. The results highlight the analytical versatility and trustworthiness of 3D-printing-based devices at miniaturized scale integrating advanced electrochemistry and its potential for real-time cell monitoring.
Collapse
Affiliation(s)
- Miriam Chávez
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28802 Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28802 Madrid, Spain
- Chemical
Research Institute “Andrés M. Del Rio”, University of Alcalá, E-28802 Madrid, Spain
| |
Collapse
|
3
|
Siqueira G, Rocha RG, Nascimento AB, Richter EM, Muñoz RAA. Portable Atmospheric Air Plasma Jet Pen for the Surface Treatment of Three-Dimensionally (3D)-Printed Electrodes. Anal Chem 2024; 96:15852-15858. [PMID: 39236255 PMCID: PMC11465224 DOI: 10.1021/acs.analchem.4c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Three-dimensional (3D) printing is an emerging technology to develop devices on a large scale with potential application for electroanalysis. However, 3D-printed electrodes, in their native form, provide poor electrochemical response due to the presence of a high percentage of thermoplastic polymer in the conductive filaments. Therefore, surface treatments are usually required to remove the nonconductive material from the 3D-printed electrode surfaces, providing a dramatic improvement in the electroanalytical performance. However, these procedures are time-consuming, require bulky equipment, or even involve non-eco-friendly protocols. Herein, we demonstrated that portable and low-cost atmospheric air plasma jet pens can be used to activate electrodes additively manufactured using a commercial poly(lactic acid) filament containing carbon black as conductive filler, improving the electrochemical activity. Remarkable electrochemical results were obtained (voltammetric profile) using [Fe(CN)6]3-/4-, dopamine and [Ru(NH3)6]2+/3+ as redox probes. Microscopic, spectroscopic, and electrochemical techniques revealed that the air-plasma jet pen removes the excess PLA on the 3D-printed electrode surface, exposing the conductive carbon black particles and increasing the surface area. The performance of the treated electrode was evaluated by the quantification of capsaicin in pepper sauce samples, with a limit of detection of 3 nM, suitable for analysis of food samples. Recovery values from 94% to 101% were obtained for the analysis of spiked samples. The new treatment generated by a plasma jet pen is an alternative approach to improve the electrochemical activity of 3D-printed electrodes that present sluggish kinetics with great advantages over previous protocols, including low-cost, short time of treatment (2 min), environmentally friendly protocol (reagentless), and portability (hand-held pen).
Collapse
Affiliation(s)
- Gilvana
P. Siqueira
- Chemistry Institute, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Raquel G. Rocha
- Chemistry Institute, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Amanda B. Nascimento
- Chemistry Institute, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Eduardo M. Richter
- Chemistry Institute, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Rodrigo A. A. Muñoz
- Chemistry Institute, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
4
|
Pradela-Filho LA, Araújo DAG, Ataide VN, Meloni GN, Paixão TRLC. Challenges faced with 3D-printed electrochemical sensors in analytical applications. Anal Bioanal Chem 2024; 416:4679-4690. [PMID: 38664267 DOI: 10.1007/s00216-024-05308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 08/10/2024]
Abstract
Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers' price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high "entry barrier" to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araújo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa N Ataide
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
5
|
Veloso WB, Meloni GN, Arantes IVS, Pradela-Filho LA, Muñoz RAA, Paixão TRLC. Gold film deposition by infrared laser photothermal treatment on 3D-printed electrodes: electrochemical performance enhancement and application. Analyst 2024; 149:3900-3909. [PMID: 38912921 DOI: 10.1039/d4an00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Hernández-Rodríguez JF, Trachioti MG, Hrbac J, Rojas D, Escarpa A, Prodromidis MI. Spark-Discharge-Activated 3D-Printed Electrochemical Sensors. Anal Chem 2024; 96:10127-10133. [PMID: 38867513 PMCID: PMC11209655 DOI: 10.1021/acs.analchem.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
3D printing technology is a tremendously powerful technology to fabricate electrochemical sensing devices. However, current conductive filaments are not aimed at electrochemical applications and therefore require intense activation protocols to unleash a suitable electrochemical performance. Current activation methods based on (electro)chemical activation (using strong alkaline solutions and organic solvents and/or electrochemical treatments) or combined approaches are time-consuming and require hazardous chemicals and dedicated operator intervention. Here, pioneering spark-discharge-activated 3D-printed electrodes were developed and characterized, and it was demonstrated that their electrochemical performance was greatly improved by the effective removal of the thermoplastic support polylactic acid (PLA) as well as the formation of sponge-like and low-dimensional carbon nanostructures. This reagent-free approach consists of a direct, fast, and automatized spark discharge between the 3D-electrode and the respective graphite pencil electrode tip using a high-voltage power supply. Activated electrodes were challenged toward the simultaneous voltammetric determination of dopamine (DP) and serotonin (5-HT) in cell culture media. Spark discharge has been demonstrated as a promising approach for conductive filament activation as it is a fast, green (0.94 GREEnness Metric Approach), and automatized procedure that can be integrated into the 3D printing pipeline.
Collapse
Affiliation(s)
- Juan F. Hernández-Rodríguez
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Maria G. Trachioti
- Department
of Chemistry, University of Ioannina, 45 110 Ioannina, Greece
| | - Jan Hrbac
- Department
of Chemistry, Masaryk University, 625 00 Brno, Czech Republic
| | - Daniel Rojas
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
- Chemical
Research Institute “Andres M. Del Rio”, University of Alcalá, Alcalá
de Henares 28802, Madrid, Spain
| | | |
Collapse
|
7
|
Kozłowska K, Cieślik M, Koterwa A, Formela K, Ryl J, Niedziałkowski P. Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2833. [PMID: 38930201 PMCID: PMC11204644 DOI: 10.3390/ma17122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation. A microwave synthesizer used in chemical laboratories (CEM, Matthews, NC, USA) was used for this purpose, establishing that the appropriate activation time for CB-PLA electrodes is 15 min at 70 °C with a microwave power of 100 W. However, the usefulness of an 80 W kitchen microwave oven is also presented for the first time and discussed as a more sustainable approach to CB-PLA electrode activation. It has been established that 10 min in a kitchen microwave oven is adequate to activate the electrode. The electrochemical properties of the microwave-activated electrodes were determined by electrochemical techniques, and their topography was characterized using scanning electron microscopy (SEM), Raman spectroscopy, and contact-angle measurements. This study confirms that during microwave activation, PLAs decompose to uncover the conductive carbon-black filler. We deliver a proof-of-concept of the utility of kitchen microwave-oven activation of a 3D-printed, free-standing electrochemical cell (FSEC) in paracetamol electroanalysis in aqueous electrolyte solution. We established satisfactory limits of linearity for paracetamol detection using voltammetry, ranging from 1.9 μM to 1 mM, with a detection limit (LOD) of 1.31 μM.
Collapse
Affiliation(s)
- Kornelia Kozłowska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| | - Mateusz Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Adrian Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland;
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| |
Collapse
|
8
|
de Faria LV, Macedo AA, Arantes LC, Matias TA, Ramos DLO, Richter EM, Dos Santos WTP, Muñoz RAA. Novel disposable and portable 3D-printed electrochemical apparatus for fast and selective screening of 25E-NBOH in forensic samples. Talanta 2024; 269:125476. [PMID: 38042144 DOI: 10.1016/j.talanta.2023.125476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The advent of new psychoactive substances (NPS) has caused enormous difficulty for legal control since they are rapidly commercialized, and their chemical structures are routinely altered. In this aspect, derivatives phenethylamines, such as 25E-NBOH, have received great attention in the forensic scenario. Hence, we propose portable and cost-effective (U$ 5.00) 3D-printed devices for the electrochemical screening of 25E-NBOH for the first time. The cell and all electrodes were printed using acrylonitrile butadiene styrene filament (insulating material) and conductive filament (graphite embedded in a polylactic acid matrix), respectively, both by the fused deposition modeling (FDM) 3D printing technique. The electrochemical apparatus enables micro-volume analysis (50-2000 μL), especially important for low sample volumes. A mechanistic route for the electrochemical oxidation of 25E-NBOH is proposed based on cyclic voltammetric data, which showed two oxidation processes around +0.75 V and +1.00 V and a redox pair between +0.2 and -0.2 V (vs. graphite ink pseudo-reference). A fast and sensitive square-wave voltammetry method was developed, which exhibited a linear working range from 0.85 to 5.1 μmoL-1, detection limit of 0.2 μmol L-1, and good intra-electrode precision (n = 10, RSD <5.3 %). Inter-electrode measurements (n = 3, RSD <9.8 %) also attested that the electrode production process is reproducible. Interference tests in the presence of other drugs frequently found in blotting paper indicated high selectivity of the electrochemical method for screening of 25E-NBOH. Screening analysis of blotting paper confirmed the presence of 25E-NBOH in the seized samples. Moreover, a recovery percentage close to 100 % was found for a spiked saliva sample, suggesting the method's usefulness for quantitative purposes aimed at information on recent drug use.
Collapse
Affiliation(s)
- Lucas V de Faria
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil; Department of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, 24020-141, Niterói, RJ, Brazil.
| | - Anne A Macedo
- Department of Chemistry, Federal University of the Jequitinhonha and Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Luciano C Arantes
- Forensic Chemistry and Physics Laboratory, Institute of Forensic Science, Civil Police of the Brazilian Federal District, Brasília, DF, 70610-907, Brazil
| | - Tiago A Matias
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil; Chemistry Department, Federal University of Espírito Santo - UFES, 29075-910, Vitória, ES, Brazil
| | - David L O Ramos
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil; National Institute of Science and Technology in Bioanalytics (INCT-Bio), Campinas, SP, Brazil
| | - Wallans T P Dos Santos
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil; National Institute of Science and Technology in Bioanalytics (INCT-Bio), Campinas, SP, Brazil.
| |
Collapse
|
9
|
Putri KNA, Intasanta V, Hoven VP. Current significance and future perspective of 3D-printed bio-based polymers for applications in energy conversion and storage system. Heliyon 2024; 10:e25873. [PMID: 38390075 PMCID: PMC10881347 DOI: 10.1016/j.heliyon.2024.e25873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing global population has led to a surge in energy demand and the production of environmentally harmful products, highlighting the urgent need for renewable and clean energy sources. In this context, sustainable and eco-friendly energy production strategies have been explored to mitigate the adverse effects of fossil fuel consumption to the environment. Additionally, efficient energy storage devices with a long lifespan are also crucial. Tailoring the components of energy conversion and storage devices can improve overall performance. Three-dimensional (3D) printing provides the flexibility to create and optimize geometrical structure in order to obtain preferable features to elevate energy conversion yield and storage capacitance. It also serves the potential for rapid and cost-efficient manufacturing. Besides that, bio-based polymers with potential mechanical and rheological properties have been exploited as material feedstocks for 3D printing. The use of these polymers promoted carbon neutrality and environmentally benign processes. In this perspective, this review provides an overview of various 3D printing techniques and processing parameters for bio-based polymers applicable for energy-relevant applications. It also explores the advances and current significance on the integration of 3D-printed bio-based polymers in several energy conversion and storage components from the recently published studies. Finally, the future perspective is elaborated for the development of bio-based polymers via 3D printing techniques as powerful tools for clean energy supplies towards the sustainable development goals (SDGs) with respect to environmental protection and green energy conversion.
Collapse
Affiliation(s)
- Khoiria Nur Atika Putri
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varol Intasanta
- Nanohybrids and Coating Research Group, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Print-Pause-Print Fabrication of Tailored Electrochemical Microfluidic Devices. Anal Chem 2023; 95:18679-18684. [PMID: 38095628 PMCID: PMC10753525 DOI: 10.1021/acs.analchem.3c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023]
Abstract
Three-dimensional (3D) printing technology has emerged as a powerful technology for the fabrication of low-cost microfluidics. Nevertheless, the fabrication of microfluidic devices integrating high-performance electrochemical sensors in practical applications is still an open challenge. Although automatic fabrication of the microfluidic device and the electrodes can be successfully carried out using a one-step multimaterial fused filament fabrication (FFF) approach, the as-printed electrochemical performance of these electrodes is not good enough for chemical (bio)sensing and their surface modification is challenging because after closing the channel there is no physical access to the electrode. Thus, here a pause-print-pause (PPP) microfabrication approach was implemented. The fabrication was paused before printing the microfluidics, and the filament-based electrodes were directly modified on the printing bed via stencil printing, drop casting, and electrodeposition. To exemplify this versatile workflow, the design of a microfluidic glucose sensor was proposed. To this end, first, the working and counter electrodes were stencil printed with graphite ink while the reference electrode was stencil printed with Ag|AgCl ink. Then, Prussian blue was formed on the working electrode either by drop casting or by electrodeposition, and glucose oxidase was drop cast on top. At this point, the microfabrication process was resumed, and the microfluidics were printed on top of the modified electrodes to complete the construction of hybrid electrochemical fluidic fused filament fabricated devices (h-eF4Ds). This print-pause-print approach is not limited to ink-based electrodes or glucose oxidase, and we envisage these results will pave the way for the effective integration of electrodes in microfluidic devices in a simple and clean-room-free approach, allowing the development of highly customized eF4Ds for a plethora of analytes with high significance.
Collapse
Affiliation(s)
- Juan F. Hernández-Rodríguez
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Daniel Rojas
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
- Chemical
Research Institute “Andres M. Del Rio”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
11
|
Lisboa TP, de Faria LV, de Oliveira WBV, Oliveira RS, Matos MAC, Dornellas RM, Matos RC. Cost-effective protocol to produce 3D-printed electrochemical devices using a 3D pen and lab-made filaments to ciprofloxacin sensing. Mikrochim Acta 2023; 190:310. [PMID: 37466780 DOI: 10.1007/s00604-023-05892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
A novel conductive filament based on graphite (Gr) dispersed in polylactic acid polymer matrix (PLA) is described to produce 3D-electrochemical devices (Gr/PLA). This conductive filament was used to additively manufacture electrochemical sensors using the 3D pen. Thermogravimetric analysis confirmed that Gr was successfully incorporated into PLA, achieving a composite material (40:60% w/w, Gr and PLA, respectively), while Raman and scanning electron microscopy revealed the presence of defects and a high porosity on the electrode surface, which contributes to improved electrochemical performance. The 3D-printed Gr/PLA electrode provided a more favorable charge transfer (335 Ω) than the conventional glassy carbon (1277 Ω) and 3D-printed Proto-pasta® (3750 Ω) electrodes. As a proof of concept, the ciprofloxacin antibiotic, a species of multiple interest, was selected as a model molecule. Thus, a square wave voltammetry (SWV) method was proposed in the potential range + 0.9 to + 1.3 V (vs Ag|AgCl|KCl(sat)), which provided a wide linear working range (2 to 32 µmol L-1), 1.79 µmol L-1 limit of detection (LOD), suitable precision (RSD < 7.9%), and recovery values from 94 to 109% when applied to pharmaceutical and milk samples. Additionally, the sensor is free from the interference of other antibiotics routinely employed in veterinary practices. This device is disposable, cost-effective, feasibly produced in financially limited laboratories, and consequently promising for evaluation of other antibiotic species in routine applications.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
- College of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, 79804-970, Brazil.
| | | | | | - Raylla Santos Oliveira
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | | | | | - Renato Camargo Matos
- Chemistry Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| |
Collapse
|
12
|
Portable smartphone integrated 3D-Printed electrochemical sensor for nonenzymatic determination of creatinine in human urine. Talanta 2023; 254:124131. [PMID: 36470021 DOI: 10.1016/j.talanta.2022.124131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
3D printing technologies are an attractive for fabricating electrochemical sensors due to their ease of operation, freedom of design, fast prototyping, low waste, and low cost. We report the fabrication of a simple 3D-printed electrochemical sensing device for non-enzymatic detection of creatinine, an important indicator of renal function. To create the 3D-printed electrodes (3DE), carbon black/polylactic acid (CB/PLA) composite filament was used. The 3DE was activated using 0.5 M NaOH via amperometry prior to use to improve electrochemical performance. To give selectivity for creatinine, the activated 3DE was modified with a copper oxide nanoparticle-ionic liquid/reduced graphene oxide (CuO-IL/rGO) composite. The modified 3DE was characterized using microscopy and electrochemistry. Cyclic voltammetry and amperometry were used to evaluate sensor performance. The modified 3DE provided electrocatalytic activity towards creatinine without enzymes. Under optimal conditions, the modified 3DE directly coupled with a portable smartphone potentiostat exhibited the linear detection range of 0.5-35.0 mM, and the limit of detection was 37.3 μM, which is sufficient for detecting creatinine in human urine samples. Furthermore, the other physiological compounds present in human urine were not detected on the modified 3DE. Therefore, the modified 3DE could be a tool for effective creatinine screening in the urine.
Collapse
|
13
|
Pastushok O, Kivijärvi L, Laakso E, Haukka M, Piili H, Repo E. Electrochemical properties of graphite/nylon electrodes additively manufactured by laser powder bed fusion. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Veloso WB, Ataide VN, Rocha DP, Nogueira HP, de Siervo A, Angnes L, Muñoz RAA, Paixão TRLC. 3D-printed sensor decorated with nanomaterials by CO 2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Mikrochim Acta 2023; 190:63. [PMID: 36670263 DOI: 10.1007/s00604-023-05648-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode's polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 μmol L-1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa N Ataide
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diego P Rocha
- Federal Institute of Paraná, Pitanga, PR, 85200-000, Brazil
| | - Helton P Nogueira
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Department of Physical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Abner de Siervo
- Institute of Physics "Gleb Wataghin," Applied Physics Department, State University of Campinas, Campinas, SP, 13083-859, Brazil
| | - Lucio Angnes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
15
|
Le AQH, Nguyen NNT, Tran HD, Nguyen VH, Tran LH. A TiO 2@MWCNTs nanocomposite photoanode for solar-driven water splitting. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1520-1530. [PMID: 36605608 PMCID: PMC9764854 DOI: 10.3762/bjnano.13.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A TiO2@MWCNTs (multi-wall carbon nanotubes) nanocomposite photoanode is prepared for photoelectrochemical water splitting in this study. The physical and photoelectrochemical properties of the photoanode are characterized using field emission-scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and linear sweep voltammetry. The results show that the TiO2@MWCNTs nanocomposite has an optical bandgap of 2.5 eV, which is a significant improvement in visible-light absorption capability compared to TiO2 (3.14 eV). The cyclic voltammograms show that incorporating TiO2 with the MWCNTs leads to a decrease in the electrical double layer, thereby facilitating the electron transfer rate in the TiO2@MWCNTs electrode. Moreover, the current density of the photoelectrochemical electrode formed by TiO2@MWCNTs under solar irradiation is significantly higher than that prepared by TiO2 (vs Ag/AgCl). The low charge capacity of the TiO2@MWCNTs electrode-electrolyte interface hinders the recombination of the photogenerated electrons and holes, which contributes to the enhancement of the solar-to-hydrogen (STH) conversion efficiency. The average STH conversion efficiency of the TiO2@MWCNTs electrode under solar exposure from 6 AM to 5 PM is 11.1%, 8.88 times higher than that of a TiO2 electrode. The findings suggested TiO2@MWCNTs is a feasible nanomaterial to fabricate the photoanode using photoelectrochemical water splitting under solar irradiation.
Collapse
Affiliation(s)
- Anh Quynh Huu Le
- Ho Chi Minh City University of Natural Resource and Environment, 236B Le Van Sy street, Tan Binh District, Ho Chi Minh City, Vietnam
| | - Ngoc Nhu Thi Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hai Duy Tran
- Ho Chi Minh City University of Natural Resource and Environment, 236B Le Van Sy street, Tan Binh District, Ho Chi Minh City, Vietnam
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Le-Hai Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Crapnell RD, Garcia-Miranda Ferrari A, Whittingham MJ, Sigley E, Hurst NJ, Keefe EM, Banks CE. Adjusting the Connection Length of Additively Manufactured Electrodes Changes the Electrochemical and Electroanalytical Performance. SENSORS (BASEL, SWITZERLAND) 2022; 22:9521. [PMID: 36502222 PMCID: PMC9736051 DOI: 10.3390/s22239521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
Changing the connection length of an additively manufactured electrode (AME) has a significant impact on the electrochemical and electroanalytical response of the system. In the literature, many electrochemical platforms have been produced using additive manufacturing with great variations in how the AME itself is described. It is seen that when measuring the near-ideal outer-sphere redox probe hexaamineruthenium (III) chloride (RuHex), decreasing the AME connection length enhances the heterogeneous electrochemical transfer (HET) rate constant (k0) for the system. At slow scan rates, there is a clear change in the peak-to-peak separation (ΔEp) observed in the RuHex voltammograms, with the ΔEp shifting from 118 ± 5 mV to 291 ± 27 mV for the 10 and 100 mm electrodes, respectively. For the electroanalytical determination of dopamine, no significant difference is noticed at low concentrations between 10- and 100-mm connection length AMEs. However, at concentrations of 1 mM dopamine, the peak oxidation is shifted to significantly higher potentials as the AME connection length is increased, with a shift of 150 mV measured. It is recommended that in future work, all AME dimensions, not just the working electrode head size, is reported along with the resistance measured through electrochemical impedance spectroscopy to allow for appropriate comparisons with other reports in the literature. To produce the best additively manufactured electrochemical systems in the future, researchers should endeavor to use the shortest AME connection lengths that are viable for their designs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
17
|
Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
de Oliveira FM, Mendonça MZM, de Moraes NC, Petroni JM, Neves MM, de Melo EI, Lucca BG, Bezerra da Silva RA. Exploring the coating of 3D-printed insulating substrates with conductive composites: a simple, cheap and versatile strategy to prepare customized high-performance electrochemical sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3345-3354. [PMID: 35979860 DOI: 10.1039/d2ay00803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of 3D-printed electrochemical sensors by fused deposition modeling (FDM) has been increasing exponentially in the last five years. In this context, commercial conductive filaments composed of a blend of carbon particles (e.g., graphene or carbon black (CB)) and insulating thermoplastic polymers (e.g., polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS)) have been widely used for electrode fabrication. However, such materials may be expensive and the electrodes when used "as-printed" exhibit poor electrochemical performance as a function of the low content of conductive particles in the composition (∼10 to 20 wt%), which requires one or more post-treatment steps (e.g. polishing, chemical, electrochemical, and photochemical) to reach good electrochemical performance. In this technical note a less used approach to produce "ready-to-use" electrochemical platforms based on 3D printing is explored, which consists of the coating of 3D-printed insulating substrates with homemade conductive composites. To demonstrate the potentiality of this alternative protocol, 3D-printed ABS insulating substrates at two geometries were coated in a highly loaded graphite (55 wt%) homemade composite (G-ABS) and evaluated for the detection of the ferri/ferrocyanide redox probe and model analytes in stationary and hydrodynamic 3D-printed systems (nitrite in micro-flow injection analysis/μFIA and paracetamol in batch injection analysis/BIA, respectively). The analytical parameters acquired with the coated electrodes were comparable to those obtained using conventional electrodes (glassy carbon, boron-doped diamond and carbon screen-printed) and 3D-printed sensors fabricated with commercial filaments. Moreover, the inclusion of carbon black in the fluid conductive composite was demonstrated as a perspective to obtain modified coated 3D-printed surfaces easily for the first time. This alternative "do it yourself" strategy is promising for the large-scale production of very cheap (US$ 0.08) and high-performance electrodes based on FDM 3D printing. Moreover, this approach dispenses the acquisition of commercial conductive filaments and the laborious development of homemade filaments.
Collapse
Affiliation(s)
| | | | | | | | - Matheus Meneguel Neves
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | - Edmar Isaias de Melo
- Chemistry Institute, Federal University of Uberlândia, Monte Carmelo, MG, 38500-000, Brazil.
| | - Bruno Gabriel Lucca
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | | |
Collapse
|
19
|
Stefano JS, Kalinke C, da Rocha RG, Rocha DP, da Silva VAOP, Bonacin JA, Angnes L, Richter EM, Janegitz BC, Muñoz RAA. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal Chem 2022; 94:6417-6429. [PMID: 35348329 DOI: 10.1021/acs.analchem.1c05523] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Raquel Gomes da Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Diego Pessoa Rocha
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil.,Department of Chemistry, Federal Institute of Paraná, 85200-000, Pitanga, Paraná, Brazil
| | | | - Juliano Alves Bonacin
- Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Lúcio Angnes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | | |
Collapse
|
20
|
Stefano JS, Guterres E Silva LR, Rocha RG, Brazaca LC, Richter EM, Abarza Muñoz RA, Janegitz BC. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2. Anal Chim Acta 2022; 1191:339372. [PMID: 35033268 PMCID: PMC9381826 DOI: 10.1016/j.aca.2021.339372] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The 3D printing technology has gained ground due to its wide range of applicability. The development of new conductive filaments contributes significantly to the production of improved electrochemical devices. In this context, we report a simple method to producing an efficient conductive filament, containing graphite within the polymer matrix of PLA, and applied in conjunction with 3D printing technology to generate (bio)sensors without the need for surface activation. The proposed method for producing the conductive filament consists of four steps: (i) mixing graphite and PLA in a heated reflux system; (ii) recrystallization of the composite; (iii) drying and; (iv) extrusion. The produced filament was used for the manufacture of electrochemical 3D printed sensors. The filament and sensor were characterized by physicochemical techniques, such as SEM, TGA, Raman, FTIR as well as electrochemical techniques (EIS and CV). Finally, as a proof-of-concept, the fabricated 3D-printed sensor was applied for the determination of uric acid and dopamine in synthetic urine and used as a platform for the development of a biosensor for the detection of SARS-CoV-2. The developed sensors, without pre-treatment, provided linear ranges of 0.5-150.0 and 5.0-50.0 μmol L-1, with low LOD values (0.07 and 0.11 μmol L-1), for uric acid and dopamine, respectively. The developed biosensor successfully detected SARS-CoV-2 S protein, with a linear range from 5.0 to 75.0 nmol L-1 (0.38 μg mL-1 to 5.74 μg mL-1) and LOD of 1.36 nmol L-1 (0.10 μg mL-1) and sensitivity of 0.17 μA nmol-1 L (0.01 μA μg-1 mL). Therefore, the lab-made produced and the ready-to-use conductive filament is promising and can become an alternative route for the production of different 3D electrochemical (bio)sensors and other types of conductive devices by 3D printing.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Raquel Gomes Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Laís Canniatti Brazaca
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, São Paulo, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil.
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| |
Collapse
|
21
|
Whittingham MJ, Crapnell RD, Rothwell EJ, Hurst NJ, Banks CE. Additive manufacturing for electrochemical labs: An overview and tutorial note on the production of cells, electrodes and accessories. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Wang L, Pumera M. Covalently modified enzymatic 3D-printed bioelectrode. Mikrochim Acta 2021; 188:374. [PMID: 34628520 DOI: 10.1007/s00604-021-05006-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Three-dimensional (3D) printing has showed great potential for the construction of electrochemical sensor devices. However, reported 3D-printed biosensors are usually constructed by physical adsorption and needed immobilizing reagents on the surface of functional materials. To construct the 3D-printed biosensors, the simple modification of the 3D-printed device by non-expert is mandatory to take advantage of the remote, distributed 3D printing manufacturing. Here, a 3D-printed electrode was prepared by fused deposition modeling (FDM) 3D printing technique and activated by chemical and electrochemical methods. A glucose oxidase-based 3D-printed nanocarbon electrode was prepared by covalent linkage method to an enzyme on the surface of the 3D-printed electrode to enable biosensing. X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the glucose oxidase-based biosensor. Direct electrochemistry glucose oxidase-based biosensor with higher stability was then chosen to detect the two biomarkers, hydrogen peroxide and glucose by chronoamperometry. The prepared glucose oxidase-based biosensor was further used for the detection of glucose in samples of apple cider. The covalently linked glucose oxidase 3D-printed nanocarbon electrode as a biosensor showed excellent stability. This work can open new doors for the covalent modification of 3D-printed electrodes in other electrochemistry fields such as biosensors, energy, and biocatalysis.
Collapse
Affiliation(s)
- Lujun Wang
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200, Brno, Czech Republic
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
- 3D Printing and Innovation Hub, Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200, Brno, Czech Republic.
- 3D Printing and Innovation Hub, Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, South Korea.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
23
|
Rocha DP, Rocha RG, Castro SVF, Trindade MAG, Munoz RAA, Richter EM, Angnes L. Posttreatment of 3D‐printed surfaces for electrochemical applications: A critical review on proposed protocols. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Diego P. Rocha
- Instituto de Química Universidade de São Paulo Sao Paulo Brazil
| | - Raquel G. Rocha
- Instituto de Química Universidade Federal de Uberlândia berlândia Brazil
| | | | - Magno A. G. Trindade
- Faculdade de Ciências Exatas e Tecnologia Universidade Federal da Grande Dourados Dourados Brazil
- UNESP Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM) National Institute for Alternative Technologies of Detection Institute of Chemistry Araraquara Brazil
| | | | - Eduardo M. Richter
- Instituto de Química Universidade Federal de Uberlândia berlândia Brazil
| | - Lucio Angnes
- Instituto de Química Universidade de São Paulo Sao Paulo Brazil
| |
Collapse
|
24
|
Ghosh K, Pumera M. MXene and MoS 3- x Coated 3D-Printed Hybrid Electrode for Solid-State Asymmetric Supercapacitor. SMALL METHODS 2021; 5:e2100451. [PMID: 34927869 DOI: 10.1002/smtd.202100451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Indexed: 06/14/2023]
Abstract
Recently, 2D nanomaterials such as transition metal carbides or nitrides (MXenes) and transition metal dichalcogenides (TMDs) have attracted ample attention in the field of energy storage devices specifically in supercapacitors (SCs) because of their high metallic conductivity, wide interlayer spacing, large surface area, and 2D layered structures. However, the low potential window (ΔV ≈ 0.6 V) of MXene e.g., Ti3 C2 Tx limits the energy density of the SCs. Herein, asymmetric supercapacitors (ASCs) are fabricated by assembling the exfoliated Ti3 C2 Tx (Ex-Ti3 C2 Tx ) as the negative electrode and transition metal chalcogenide (MoS3- x ) coated 3D-printed nanocarbon framework (MoS3- x @3DnCF) as the positive electrode utilizing polyvinyl alcohol (PVA)/H2 SO4 gel electrolyte, which provides a wide ΔV of 1.6 V. The Ex-Ti3 C2 Tx possesses wrinkled sheets which prevent the restacking of Ti3 C2 Tx 2D layers. The MoS3- x @3DnCF holds a porous structure and offers diffusion-controlled intercalated pseudocapacitance that enhances the overall capacitance. The 3D printing allows a facile fabrication of customized shaped MoS3- x @3DnCF electrodes. Employing the advantages of the 3D-printing facilities, two different ASCs, such as sandwich- and interdigitated-configurations are fabricated. The customized ASCs provide excellent capacitive performance. Such ASCs combining the MXene and electroactive 3D-printed nanocarbon framework can be used as potential energy storage devices in modern electronics.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- 3D Printing & Innovation Hub, Department of Food Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
25
|
|
26
|
Abdalla A, Patel BA. 3D Printed Electrochemical Sensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:47-63. [PMID: 33974807 DOI: 10.1146/annurev-anchem-091120-093659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printing has recently emerged as a novel approach in the development of electrochemical sensors. This approach to fabrication has provided a tremendous opportunity to make complex geometries of electrodes at high precision. The most widely used approach for fabrication is fused deposition modeling; however, other approaches facilitate making smaller geometries or expanding the range of materials that can be printed. The generation of complete analytical devices, such as electrochemical flow cells, provides an example of the array of analytical tools that can be developed. This review highlights the fabrication, design, preparation, and applications of 3D printed electrochemical sensors. Such developments have begun to highlight the vast potential that 3D printed electrochemical sensors can have compared to other strategies in sensor development.
Collapse
Affiliation(s)
- Aya Abdalla
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton BN2 4GJ, United Kingdom; ,
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton BN2 4GJ, United Kingdom; ,
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
27
|
Petroni JM, Neves MM, de Moraes NC, Bezerra da Silva RA, Ferreira VS, Lucca BG. Development of highly sensitive electrochemical sensor using new graphite/acrylonitrile butadiene styrene conductive composite and 3D printing-based alternative fabrication protocol. Anal Chim Acta 2021; 1167:338566. [PMID: 34049626 DOI: 10.1016/j.aca.2021.338566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Here, a novel electrically conductive thermoplastic material composed of graphite/acrylonitrile butadiene styrene (G/ABS) is reported for the first time. This material was explored on the production of 3D printing-based electrochemical sensors with enhanced sensitivity using a novel fabrication approach. The developed G/ABS electrodes showed lower charge transfer resistance (157 vs. 3279 Ω), higher electroactive area (0.61 vs. 0.19 cm2) and peak currents ca. 69% higher when compared with electrodes fabricated using carbon black/polylactic acid (CB/PLA) commercial filament, which has been widely explored in recent literature. Moreover, the G/ABS sensor provided satisfactory repeatability, reproducibility and stability (relative standard deviations (RSDs) were 1.14%, 6.81% and 10.62%, respectively). This improved performance can be attributed to the fabrication protocol developed here, which allows the incorporation of greater amounts of conductive material in the polymeric matrix. The G/ABS electrode also required a simpler and quicker protocol for activation when compared to CB/PLA. As proof of concept, the G/ABS sensor was employed for electroanalytical quantification of paracetamol (PAR) in pharmaceutical products. The linear concentration range was observed from 0.20 to 30 μmol L-1 and the limit of detection achieved was 54 nmol L-1, much lower than several recent studies dealing with the same analyte. The sensitivity of the G/ABS electrode regarding PAR was also far better when compared to CB/PLA sensor (0.50 μA/μmol L-1 vs. 0.12 μA/μmol L-1). Analyses in commercial pill samples showed good accuracy (recoveries ca. 108%) and precision (RSDs < 5%), suggesting great potential for use of this novel conductive thermoplastic in electroanalytical applications based on 3D printing.
Collapse
Affiliation(s)
| | - Matheus Meneguel Neves
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | | | | | - Valdir Souza Ferreira
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | - Bruno Gabriel Lucca
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil.
| |
Collapse
|
28
|
Iffelsberger C, Jellett CW, Pumera M. 3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101233. [PMID: 33938128 DOI: 10.1002/smll.202101233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Indexed: 05/24/2023]
Abstract
The rise of 3D printing technology, with fused deposition modeling as one of the simplest and most widely used techniques, has empowered an increasing interest for composite filaments, providing additional functionality to 3D-printed components. For future applications, like electrochemical energy storage, energy conversion, and sensing, the tuning of the electrochemical properties of the filament and its characterization is of eminent importance to improve the performance of 3D-printed devices. In this work, customized conductive graphite/poly(lactic acid) filament with a percentage of graphite filler close to the conductivity percolation limit is fabricated and 3D-printed into electrochemical devices. Detailed scanning electrochemical microscopy investigations demonstrate that 3D-printing temperature has a dramatic effect on the conductivity and electrochemical performance due to a changed conducive filler/polymer distribution. This may allow, e.g., 3D printing of active/inactive parts of the same structure from the same filament when changing the 3D printing nozzle temperature. These tailored properties can have profound influence on the application of these 3D-printed composites, which can lead to a dramatically different functionality of the final electrical, electrochemical, and energy storage device.
Collapse
Affiliation(s)
- Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Cameron W Jellett
- Center of Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague, 16628, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Center of Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague, 16628, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- 3D Printing & Innovation Hub, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
29
|
Ferreira PA, de Oliveira FM, de Melo EI, de Carvalho AE, Lucca BG, Ferreira VS, da Silva RAB. Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening. Anal Chim Acta 2021; 1169:338568. [PMID: 34088376 DOI: 10.1016/j.aca.2021.338568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
3D printing is a hot topic in electroanalytical chemistry, allowing the construction of custom cells and sensors at affordable prices. In this work, we describe a novel small and practical 3D-printed electrochemical cell. The cell's body, manufactured in ABS on a 3D printer, is composed by three parts easily screwed: solution vessel, stick and cover with two embedded 3D-pen-printed carbon black-polylactic acid (CB-PLA) electrodes (counter and pseudo-reference). The cell is compatible with any planar working electrode, in which boron-doped diamond, graphite sheet (GS) and 3D-printed CB-PLA were shown as examples. A new alternative protocol to quickly produce 3D-printed sensors using a 3D pen and other low-cost apparatus is also proposed. The voltammetric performance of each evaluated sensor was carried out in the presence of redox probe ferricyanide and paracetamol as model analyte, and the surfaces were characterized by electrochemical impedance spectroscopy and scanning electrochemical microscopy. To present an analytical application of the 3D-printed cell, low-cost flexible sensors (GS and CB-PLA) were used as integrated platforms for sampling and detection of solid drugs. As a proof-of-concept, traces of drugs with a historic of counterfeit or adulteration (sildenafil citrate, tadalafil, losartan and 17α-ethinylestradiol) were abrasively sampled over the sensor and assembled on 3D-printed cell to perform a fast voltammetric scan in the presence of only 500 μL of electrolyte. This protocol is attractive for pharmaceutical and forensic sciences as a simple preliminary screening method which could identify the presence or absence of the suspicious drug as well as impurities or adulterants. The 3D-printed cell was also used for the determination of 17α-ethinylestradiol in a contraceptive pill to demonstrate a quantitative analysis. The cell is quickly printed (90 min), cheap (US$ 0.30) and requires low electrolyte volumes (0.5-3.0 mL), being suitable to be used in several other electroanalyses, especially for on-site applications.
Collapse
Affiliation(s)
- Priscila Alves Ferreira
- Instituto de Química, Universidade Federal de Mato Grosso Do Sul, 79074-460, Campo Grande, MS, Brazil
| | | | - Edmar Isaias de Melo
- Instituto de Química, Universidade Federal de Uberlândia, 38500-000, Monte Carmelo, MG, Brazil
| | - Adriana Evaristo de Carvalho
- Faculdade de Ciências Exatas e Tecnológicas, Universidade Federal da Grande Dourados, 79804-970, Dourados, MS, Brazil
| | - Bruno Gabriel Lucca
- Instituto de Química, Universidade Federal de Mato Grosso Do Sul, 79074-460, Campo Grande, MS, Brazil
| | - Valdir Souza Ferreira
- Instituto de Química, Universidade Federal de Mato Grosso Do Sul, 79074-460, Campo Grande, MS, Brazil
| | | |
Collapse
|
30
|
Omar MH, Razak KA, Ab Wahab MN, Hamzah HH. Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices. RSC Adv 2021; 11:16557-16571. [PMID: 35479129 PMCID: PMC9031910 DOI: 10.1039/d1ra01987b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
3D-printing or additive manufacturing is presently an emerging technology in the fourth industrial revolution that promises to reshape traditional manufacturing processes. The electrochemistry field can undoubtedly take advantage of this technology to fabricate electrodes to create a new generation of electrode sensor devices that could replace conventionally manufactured electrodes; glassy carbon, screen-printed carbon and carbon composite electrodes. In the electrochemistry research area, studies to date show that there is a demand for electrically 3D printable conductive polymer/carbon nanomaterial filaments where these materials can be printed out through an extrusion process based upon the fused deposition modelling (FDM) method. FDM could be used to manufacture novel electrochemical 3D printed electrode sensing devices for electrochemical sensor and biosensor applications. This is due to the FDM method being the most affordable 3D printing technique since conductive and non-conductive thermoplastic filaments are commercially available. Therefore, in this minireview, we focus on only the most outstanding studies that have been published since 2018. We believe this to be a highly-valuable research area to the scientific community, both in academia and industry, to enable novel ideas, materials, designs and methods relating to electroanalytical sensing devices to be generated. This approach has the potential to create a new generation of electrochemical sensing devices based upon additive manufacturing. This minireview also provides insight into how the research community could improve the electrochemical performance of 3D-printed electrodes to significantly increase the sensitivity of the 3D-printed electrodes as electrode sensing devices.
Collapse
Affiliation(s)
- Muhamad Huzaifah Omar
- School of Chemical Sciences, Universiti Sains Malaysia (USM) 11800 Gelugor Penang Malaysia
| | - Khairunisak Abdul Razak
- Nanobiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Gelugor Penang Malaysia
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia 14300 Nibong Tebal Penang Malaysia
| | - Mohd Nadhir Ab Wahab
- School of Computer Sciences, Universiti Sains Malaysia 11800 Gelugor Penang Malaysia
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia (USM) 11800 Gelugor Penang Malaysia
| |
Collapse
|
31
|
Rocha RG, Ribeiro JS, Santana MHP, Richter EM, Muñoz RAA. 3D-printing for forensic chemistry: voltammetric determination of cocaine on additively manufactured graphene-polylactic acid electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1788-1794. [PMID: 33885677 DOI: 10.1039/d1ay00181g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cocaine is probably one of the most trafficked illicit drugs in the world. For this reason, police forces require fast, selective, and sensitive methods for cocaine detection at crime scenes. Taking benefit of additive manufacturing, we demonstrate that 3D-printed graphene-polylactic acid (G-PLA) electrodes using the affordable fused deposition modelling technique can identify and quantify cocaine in seized drugs. The detection of cocaine based on its electrochemical oxidation on such electrodes was dramatically improved after an electrochemical surface treatment that generates reduced graphene oxide (anodic followed by a cathodic treatment). Square-wave voltammetric determination of cocaine was achieved in the concentration range between 20 and 100 μmol L-1, with a detection limit of 6 μmol L-1, and free from the interference of paracetamol, caffeine, phenacetin, lidocaine, benzocaine and levamisole, which are common adulterants found in seized drugs. The analytical characteristics obtained using 3D-printed G-PLA electrodes were comparable with those of previously reported electrochemical sensors, but presented the inherent advantages of the 3D-printing technology that enables low-cost, reproducible, and large-scale production of such electrodes in remote areas combined with the use of an environmentally-friendly biopolymer.
Collapse
Affiliation(s)
- Raquel G Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil.
| | - Julia S Ribeiro
- Institute of Chemistry, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil.
| | - Mário H P Santana
- Unidade Técnico-Científica, Superintendência Regional da Polícia Federal em MG, 38408-680, Uberlândia, Minas Gerais, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil.
| |
Collapse
|
32
|
Shin J, Seo K, Park H, Park D. Performance Improvement of Acid Pretreated 3D‐printing Composite for the Heavy Metal Ions Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jae‐Hong Shin
- Institute of BioPhysio Sensor Technology (IBST) Pusan National University Busan 46241 Republic of Korea
- Department of Chemistry Pusan National University Busan 46241 South Korea
| | - Kyeong‐Deok Seo
- Department of Chemistry Pusan National University Busan 46241 South Korea
| | - Hyun Park
- Department of Naval Architecture and Ocean Engineering Pusan National University Busan 46241 South Korea
| | - Deog‐Su Park
- Institute of BioPhysio Sensor Technology (IBST) Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
33
|
Wang L, Gao W, Ng S, Pumera M. Chiral Protein-Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Anal Chem 2021; 93:5277-5283. [PMID: 33729747 DOI: 10.1021/acs.analchem.1c00322] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-dimensional (3D) printing technology has attracted great attention for prototyping different electrochemical sensor devices. However, chiral recognition remains a crucial challenge for electrochemical sensors with similar physicochemical properties such as enantiomers. In this work, a magnetic covalent organic framework (COF) and bovine serum albumin (BSA) (as the chiral surface) functionalized 3D-printed electrochemical chiral sensor is reported for the first time. The characterization of the chiral biomolecule-COF 3D-printed constructure was performed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX). A tryptophan (Trp) enantiomer was chosen as the model chiral molecule to estimate the chiral recognition ability of the magnetic COF and BSA-based 3DE (Fe3O4@COF@BSA/3DE). We have demonstrated that the Fe3O4@COF@BSA/3DE exhibited excellent chiral recognition to l-Trp as compared to d-Trp. The chiral protein-COF sensing interface was used to determine the concentration of l-Trp in a racemic mixture of d-Trp and l-Trp. This strategy of on-demand fabrication of 3D-printed protein-COF-modified electrodes opens up new approaches for enantiomer recognition.
Collapse
Affiliation(s)
- Lujun Wang
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic.,School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Wanli Gao
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Siowwoon Ng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Korea.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
34
|
Ghosh K, Pumera M. Free-standing electrochemically coated MoS x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. NANOSCALE 2021; 13:5744-5756. [PMID: 33724279 DOI: 10.1039/d0nr06479c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm-2 at the scan rate of 10 mV s-1, and a capacitance of 11.6 mF cm-2 at the current density of 0.13 mA cm-2. Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm-2 at a current density of 0.05 mA cm-2. Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | | |
Collapse
|
35
|
Sibug-Torres SM, Go LP, Castillo VCG, Pauco JLR, Enriquez EP. Fully integrated 3D-printed electrochemical cell with a modified inkjet-printed Ag electrode for voltammetric nitrate analysis. Anal Chim Acta 2021; 1160:338430. [PMID: 33894964 DOI: 10.1016/j.aca.2021.338430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/14/2023]
Abstract
To address the need for low-cost analytical tools for on-site aquaculture water quality monitoring, miniaturized electrochemical sensor systems can be readily fabricated using additive manufacturing technologies such as 3D printing and inkjet printing. In this work, we report the design and fabrication of an additively manufactured electrochemical platform featuring a reusable 3D-printed electrochemical cell with integrated reference and counter electrodes, and a replaceable inkjet-printed Ag (IJP-Ag) working electrode. The electrochemical cell was 3D-printed with acrylonitrile butadiene styrene (ABS) filament and features a 3D-printed ABS-carbon counter electrode and a Ag|AgCl|gel-KCl reference electrode with a 3D-printed porous junction directly integrated along the sides of the sample compartment. The application of the integrated cell is demonstrated with the analysis of nitrate ions on the IJP-Ag electrode, which was modified with electrodeposited nanostructured Ag to enhance sensitivity to nitrate reduction. Linear sweep voltammetry (LSV) was successfully applied to detect nitrate with a LOD of 1.40 ppm and a sensitivity of 0.2086 μA ppm-1 in a background of artificial brackish aquaculture water (pH 8.0). The sensor response showed intra- and inter-electrode reproducibility and no significant interferences to most of the commonly encountered cations and anions in brackish water. The electrochemical sensor system was also applied to nitrate determination in real aquaculture water samples and demonstrated no significant differences with the results obtained using the standard spectrophotometric method at a 95% confidence level. Our results show how additive manufacturing is a promising approach to readily fabricate fit-for-purpose, low-cost miniaturized electrochemical sensor systems for point-of-use applications.
Collapse
Affiliation(s)
| | - Lance P Go
- Department of Chemistry, Ateneo de Manila University, Quezon City, 1108, Philippines
| | | | - Jiena Lynne R Pauco
- Department of Chemistry, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Erwin P Enriquez
- Department of Chemistry, Ateneo de Manila University, Quezon City, 1108, Philippines.
| |
Collapse
|
36
|
Redondo E, Pumera M. MXene-functionalised 3D-printed electrodes for electrochemical capacitors. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Dip-coating of MXene and transition metal dichalcogenides on 3D-printed nanocarbon electrodes for the hydrogen evolution reaction. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosens Bioelectron 2020; 170:112684. [DOI: 10.1016/j.bios.2020.112684] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
|
39
|
Ghosh K, Ng S, Iffelsberger C, Pumera M. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode. Chemistry 2020; 26:15746-15753. [PMID: 33166037 DOI: 10.1002/chem.202004250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/02/2020] [Indexed: 02/06/2023]
Abstract
Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Siowwoon Ng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
40
|
Redondo E, Ng S, Muñoz J, Pumera M. Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. NANOSCALE 2020; 12:19673-19680. [PMID: 32966493 DOI: 10.1039/d0nr04864j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
3D-printing is an emerging technology that can be used for the fast prototyping and decentralised production of objects with complex geometries. Concretely, carbon-based 3D-printed electrodes have emerged as promising components for electrochemical capacitors. However, such electrodes usually require some post-treatments to be electrically active. Herein, 3D-printed nanocomposite electrodes made from a polylactic acid/nanocarbon filament have been characterised through different carbonisation temperatures in order to improve the conductivity of the electrodes via insulating polymer removal. Importantly, the carbonisation temperature has demonstrated to be a key parameter to tailor the capacitive behaviour of the resulting electrodes. Accordingly, this work opens new insights in advanced 3D-printed carbon-based electrodes employing thermal activation.
Collapse
Affiliation(s)
- Edurne Redondo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Brno CZ-616 00, Czech Republic.
| | - Siowwoon Ng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Brno CZ-616 00, Czech Republic.
| | - Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Brno CZ-616 00, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Brno CZ-616 00, Czech Republic. and Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, 613 00 Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea and Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
41
|
Rocha RG, Cardoso RM, Zambiazi PJ, Castro SV, Ferraz TV, Aparecido GDO, Bonacin JA, Munoz RA, Richter EM. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Anal Chim Acta 2020; 1132:1-9. [DOI: 10.1016/j.aca.2020.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
|
42
|
Voltammetric studies on surface-modified electrodes with functionalised carbon nanotubes under different dispersion conditions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Abdalla A, Hamzah H, Keattch O, Covill D, Patel B. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Sfragano PS, Laschi S, Palchetti I. Sustainable Printed Electrochemical Platforms for Greener Analytics. Front Chem 2020; 8:644. [PMID: 32850659 PMCID: PMC7406795 DOI: 10.3389/fchem.2020.00644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 01/20/2023] Open
Abstract
The development of miniaturized electrochemical platforms holds considerable importance for the in situ analytical monitoring of clinical, environmental, food, and forensic samples. However, it is crucial to pay attention to the sustainability of materials chosen to fabricate these devices, in order to decrease the amount and the impact of waste coming from their production and use. In the framework of a circular economy and an environmental footprint reduction, the electrochemical sensor production technology must discover the potentiality of innovative approaches based on techniques and materials that can satisfy the needs of environmental-friendly and greener analytics. The aim of this review is to describe some of the printing technologies most used for sensor production, including screen-printing, inkjet-printing, and 3D-printing, and the low-impact materials that are recently proposed for these techniques, such as polylactic acid, cellulose, silk proteins, biochar.
Collapse
Affiliation(s)
| | | | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
45
|
Cardoso RM, Rocha DP, Rocha RG, Stefano JS, Silva RAB, Richter EM, Muñoz RAA. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2020; 1132:10-19. [PMID: 32980099 DOI: 10.1016/j.aca.2020.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 μL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 μmol L-1, linear range from 5 to 500 μmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 μmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.
Collapse
Affiliation(s)
- Rafael M Cardoso
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Diego P Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Raquel G Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Jéssica S Stefano
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A B Silva
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Eduardo M Richter
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A A Muñoz
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| |
Collapse
|
46
|
Electrochemical synthesis of Prussian blue from iron impurities in 3D-printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide. Talanta 2020; 219:121289. [PMID: 32887031 DOI: 10.1016/j.talanta.2020.121289] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
This communication shows the electrochemical synthesis of Prussian blue (PB) films on additive manufactured (3D-printed) electrodes from iron impurities found at the graphene-polylactic acid (G/PLA) substrate and its application as a highly selective sensor for H2O2. The 3D-printed G/PLA electrode was immersed in dimethylformamide for 30 min to exposure the iron impurities within the PLA matrix. Next, cyclic voltammograms (200 cycles) in the presence of potassium ferricyanide in 0.1 mol L-1 KCl + 0.01 mol L-1 HCl were performed to grow the PB films. The sensing properties of this novel PB/G/PLA platform were evaluated for the amperometric detection of H2O2 using batch-injection analysis, with a limit of detection of 0.56 μmol L-1 under the application of 0.0 V (vs Ag/AgCl/KClsat.). The applicability of the sensor was demonstrated for the analysis of milk samples (10-fold diluted in the supporting electrolyte), resulting in proper recovery values (94-101%).
Collapse
|
47
|
Zafir Mohamad Nasir M, Novotný F, Alduhaish O, Pumera M. 3D-printed electrodes for the detection of mycotoxins in food. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Cardoso RM, Kalinke C, Rocha RG, dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RA. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal Chim Acta 2020; 1118:73-91. [DOI: 10.1016/j.aca.2020.03.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023]
|
49
|
Rocha DP, Squissato AL, da Silva SM, Richter EM, Munoz RA. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135688] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Affiliation(s)
- Michelle P. Browne
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Edurne Redondo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic
| |
Collapse
|