1
|
Ryzhkov N, Colson N, Ahmed E, Pobedinskas P, Haenen K, Braun A, Janssen PJ. Electric Polarization-Dependent Absorption and Photocurrent Generation in Limnospira indica Immobilized on Boron-Doped Diamond. ACS OMEGA 2024; 9:32949-32961. [PMID: 39100327 PMCID: PMC11292817 DOI: 10.1021/acsomega.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
We present the change of light absorption of cyanobacteria in response to externally applied electrical polarization. Specifically, we studied the relation between electrical polarization and changes in light absorbance for a biophotoelectrode assembly comprising boron-doped diamond as semiconducting electrode and live Limnospira indicaPCC 8005 trichomes embedded in either polysaccharide (agar) or conductive conjugated polymer (PEDOT-PSS) matrices. Our study involves the monitoring of cyanobacterial absorbance and the measurement of photocurrents at varying wavelengths of illumination for switched electric fields, i.e., using the bioelectrode either as an anode or as cathode. We observed changes in the absorbance characteristics, indicating a direct causal relationship between electrical polarization and absorbing properties of L. indica. Our finding opens up a potential avenue for optimization of the performance of biophotovoltaic devices through controlled polarization. Furthermore, our results provide fundamental insights into the wavelength-dependent behavior of a bio photovoltaic system using live cyanobacteria.
Collapse
Affiliation(s)
- Nikolay Ryzhkov
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
| | - Nora Colson
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Essraa Ahmed
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Artur Braun
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
| | - Paul J. Janssen
- Institute
for Nuclear Medical Applications, Belgian
Nuclear Research Centre, Mol B-2400, Belgium
| |
Collapse
|
2
|
Minenkov A, Hollweger S, Duchoslav J, Erdene-Ochir O, Weise M, Ermilova E, Hertwig A, Schiek M. Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9517-9531. [PMID: 38324480 PMCID: PMC10895603 DOI: 10.1021/acsami.3c17923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid-liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid-liquid interfaces and electrochemical activity.
Collapse
Affiliation(s)
- Alexey Minenkov
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Sophia Hollweger
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Jiri Duchoslav
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Otgonbayar Erdene-Ochir
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Matthias Weise
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Elena Ermilova
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Andreas Hertwig
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Manuela Schiek
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| |
Collapse
|
3
|
Gamero‐Quijano A, Manzanares JA, Ghazvini SMBH, Low PJ, Scanlon MD. Potential-Modulated Ion Distributions in the Back-to-Back Electrical Double Layers at a Polarised Liquid|Liquid Interface Regulate the Kinetics of Interfacial Electron Transfer. ChemElectroChem 2023; 10:e202201042. [PMID: 37082100 PMCID: PMC10108062 DOI: 10.1002/celc.202201042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Indexed: 12/29/2022]
Abstract
Biphasic interfacial electron transfer (IET) reactions at polarisable liquid|liquid (L|L) interfaces underpin new approaches to electrosynthesis, redox electrocatalysis, bioelectrochemistry and artificial photosynthesis. Herein, using cyclic and alternating current voltammetry, we demonstrate that under certain experimental conditions, the biphasic 2-electron O2 reduction reaction can proceed by single-step IET between a reductant in the organic phase, decamethylferrocene, and interfacial protons in the presence of O2. Using this biphasic system, we demonstrate that the applied interfacial Galvani potential differenceΔ o w φ provides no direct driving force to realise a thermodynamically uphill biphasic IET reaction in the mixed solvent region. We show that the onset potential for a biphasic single-step IET reaction does not correlate with the thermodynamically predicted standard Galvani IET potential and is instead closely correlated with the potential of zero charge at a polarised L|L interface. We outline that the appliedΔ o w φ required to modulate the interfacial ion distributions, and thus kinetics of IET, must be optimised to ensure that the aqueous and organic redox species are present in substantial concentrations at the L|L interface simultaneously in order to react.
Collapse
Affiliation(s)
- Alonso Gamero‐Quijano
- Department of Physical ChemistryUniversity of Alicante (UA)E-03080AlicanteSpain
- The Bernal Institute and Department of Chemical SciencesSchool of Natural SciencesUniversity of Limerick (UL)LimerickV94 T9PXIreland
| | - José A. Manzanares
- Department of ThermodynamicsFaculty of PhysicsUniversity of Valenciac/Dr. Moliner, 50BurjasotE-46100ValenciaSpain
| | - Seyed M. B. H. Ghazvini
- School of Molecular SciencesUniversity of Western Australia (UWA)35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Paul J. Low
- School of Molecular SciencesUniversity of Western Australia (UWA)35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Micheál D. Scanlon
- The Bernal Institute and Department of Chemical SciencesSchool of Natural SciencesUniversity of Limerick (UL)LimerickV94 T9PXIreland
| |
Collapse
|
4
|
Bai S, You Y, Chen X, Liu C, Wang L. Monitoring Bipolar Electrochemistry and Hydrogen Evolution Reaction of a Single Gold Microparticle under Sub-Micropipette Confinement. Anal Chem 2023; 95:2054-2061. [PMID: 36625753 DOI: 10.1021/acs.analchem.2c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, an approach to track the process of autorepeating bipolar reactions and hydrogen evolution reaction (HER) on a micro gold bipolar electrode (BPE) is established. Once blocking the channel of the sub-micropipette tip, the formed gold microparticle is polarized into the wireless BPE, which induces the dissolution of the gold at the anode and the HER at the cathode. The current response shows a periodic behavior with three regions: the bubble generation region (I), the bubble rupture/generation region (II), and the channel opening region (III). After a stable low baseline current of region I, a series of positive spike signals caused by single H2 nanobubbles rupture/generation are recorded standing for the beginning of region II. Meanwhile, the dissolution of the gold blocking at the orifice will create a new channel, increasing the baseline current for region III, where the synthesis of gold occurs again, resulting in another periodic response. Finite element simulations are applied to unveil the mechanism thermodynamically. In addition, the integral charge of the H2 nanobubbles in region II corresponds to the consumption of the anode gold. It simultaneously monitors autorepeating bipolar reactions of a single gold microparticle and HER of a single H2 nanobubble electrochemically, which reveals an insightful physicochemical mechanism in nanoscale confinement and makes the glass nanopore an ideal candidate to further reveal the heterogeneity of catalytic capability at the single particle level.
Collapse
Affiliation(s)
- Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Xiangping Chen
- Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou511483, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
5
|
Gamero-Quijano A, Bhattacharya S, Cazade PA, Molina-Osorio AF, Beecher C, Djeghader A, Soulimane T, Dossot M, Thompson D, Herzog G, Scanlon MD. Modulating the pro-apoptotic activity of cytochrome c at a biomimetic electrified interface. SCIENCE ADVANCES 2021; 7:eabg4119. [PMID: 34739310 PMCID: PMC8570605 DOI: 10.1126/sciadv.abg4119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Programmed cell death via apoptosis is a natural defence against excessive cell division, crucial for fetal development to maintenance of homeostasis and elimination of precancerous and senescent cells. Here, we demonstrate an electrified liquid biointerface that replicates the molecular machinery of the inner mitochondrial membrane at the onset of apoptosis. By mimicking in vivo cytochrome c (Cyt c) interactions with cell membranes, our platform allows us to modulate the conformational plasticity of the protein by simply varying the electrochemical environment at an aqueous-organic interface. We observe interfacial electron transfer between an organic electron donor decamethylferrocene and O2, electrocatalyzed by Cyt c. This interfacial reaction requires partial Cyt c unfolding, mimicking Cyt c in vivo peroxidase activity. As proof of concept, we use our electrified liquid biointerface to identify drug molecules, such as bifonazole, that can potentially down-regulate Cyt c and protect against uncontrolled neuronal cell death in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Shayon Bhattacharya
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Pierre-André Cazade
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Cillian Beecher
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Manuel Dossot
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Damien Thompson
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Micheál D. Scanlon
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| |
Collapse
|
6
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
7
|
|