1
|
Vilà N, Nguyen L, Lacroix JC, Sun X, Walcarius A, Mbomekallé I. Assessing the Influence of Confinement on the Stability of Polyoxometalate-Functionalized Surfaces: A Soft Sequential Immobilization Approach for Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26521-26536. [PMID: 38713480 DOI: 10.1021/acsami.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (Mn+) containing polyoxometalates (POMs) with the formula [M(H2O)P2W17O61](10-n)- on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(H2O)63+, onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [P2W17O61]10- species to generate "in situ" the target [Fe(H2O)P2W17O61]7- moieties. Comparison of the characterized surfaces clearly evidenced a significant improvement in the long-term stability of the nanostructured [Fe(H2O)P2W17O61]7--functionalized silica films compared to the less constrained flat [Fe(H2O)P2W17O61]7--modified ITO electrodes for which a rapid loss of [P2W17O61]10- species was observed. Concordantly, the [Fe(H2O)P2W17O61]7- POM confined in the mesoporous films coated on ITO gave rise to much better and stable electrochromic properties, with a transmittance modulation of 40% at 515 nm.
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Linh Nguyen
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Xiaonan Sun
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Israël Mbomekallé
- Université Paris Saclay CNRS, Institut de Chimie Physique,Orsay F-91405, France
| |
Collapse
|
2
|
Ragauskaitė E, Marčiukaitis S, Radveikienė I, Bagdžiūnas G. An electrografted monolayer of polyaniline as a tuneable platform for a glucose biosensor. NANOSCALE 2024; 16:4647-4655. [PMID: 38299660 DOI: 10.1039/d3nr03680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Polyaniline (PANI), a nanostructured conducting polymer, has shown significant potential in optical and bioelectrochemical devices. However, its performance and stability on various substrates are hindered by weak adhesion to the surface. In this study, a strongly adherent polyaniline conducting polymer layer with a thickness of five nanometers was electrografted onto an initiating monolayer on gold and tin-doped indium oxide substrates. These electrografted monolayers consist of vertically oriented fully oxidized-protonated (pernigraniline salt) and deprotonated (pernigraniline base) forms of polyaniline. The monolayer exhibits pH-dependent colour changes and it is suitable for enzyme compatibility. In light of these findings, we have developed and characterized an electrochemical glucose biosensor based on the monolayer of polyaniline on a gold electrode. The biosensor utilizes glucose oxidase as the biorecognition element for the selective detection of glucose concentrations in real blood plasma samples.
Collapse
Affiliation(s)
- Elžbieta Ragauskaitė
- Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Samuelis Marčiukaitis
- Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Ingrida Radveikienė
- Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Gintautas Bagdžiūnas
- Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania.
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
3
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
4
|
Capacitors Based on Polypyrrole Nanowire Electrodeposits. Polymers (Basel) 2022; 14:polym14245476. [PMID: 36559845 PMCID: PMC9782085 DOI: 10.3390/polym14245476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The electrochemical polymerization of polypyrrole nanowires is carried out using potentiodynamic and galvanostatic methods in order to enhance the performance of the modified electrodes as capacitor devices. The electrochemical, spectroscopic, and morphological properties are determined through cyclic voltammetry, Raman spectroscopy and scanning electron microscopy, respectively, corroborating the presence of PPy-nw in dimensions of 30 nm in diameter. Characterization as a capacitor revealed that the nanowire structure enhances key parameters such as specific capacitance with 60 times greater value than bulk polymer modification, in addition to a significant increase in stability. In this way, it is verified that electrodes modified with polypyrrole nanowires obtained in situ by electrochemical methods constitute an excellent candidate for the development of capacitors.
Collapse
|
5
|
Xiong S, Xu Y, Wang X, Gong M, Chu J, Zhang R, Wu B, Wang C, Li Z. Hydrothermal synthesis of polyaniline nanospheres coupled with graphene oxide for enhanced specific capacitance performances. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221136045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyaniline is one of the most common electrode materials for supercapacitors. The morphology of polyaniline directly affects the properties of polyaniline. In this paper, a new method for preparing hollow polyaniline nanospheres is described. Polyaniline-S with solid and hollow structures are successfully synthesized by the hydrothermal method, through varying the amounts of the catalyst and oxidant. The prepared hollow nanospheres have uniform particle size, a smooth surface, and uniform wall thickness. The hollow structure provides rapid permeability to the material, facilitating the transfer and transport of charges and ions in the electrolyte, and it can also act as an ion storage tank to increase the accumulation of ions inside. The specific capacitance of polyaniline-S is high at 235 F g-1 at 0.5 A g-1. To reduce the aggregation of polyaniline-S and improve the electrochemical activity, polyaniline-S, and graphene oxide are composited using the interfacial electrostatic interaction. The content of graphene oxide has a significant influence on the electrochemical performance of the composites. The specific capacitance of the polyaniline-S/ graphene oxide composite with a 10% loading amount of graphene oxide reaches 535 F g-1 at 0.5 A g-1, increase of nearly 128% compared to representing a significant polyaniline-S. The specific capacitance retention rate is 93.6% after 10,000 cycles.
Collapse
Affiliation(s)
- Shanxin Xiong
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an, P.R. China
| | - Yangbo Xu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Xiaoqin Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Ming Gong
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Jia Chu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Runlan Zhang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Bohua Wu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Chenxu Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, P.R. China
| |
Collapse
|
6
|
Wei X, Luo X, Xu S, Xi F, Zhao T. A Flexible Electrochemiluminescence Sensor Equipped With Vertically Ordered Mesoporous Silica Nanochannel Film for Sensitive Detection of Clindamycin. Front Chem 2022; 10:872582. [PMID: 35464210 PMCID: PMC9019221 DOI: 10.3389/fchem.2022.872582] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Fast, convenient, and highly sensitive detection of antibiotic is essential to avoid its overuse and the possible harm. Owing to enrichment effect and antifouling ability of ultrasmall nanochannels, the vertically ordered mesoporous silica nanochannel film (VMSF) has great potential in the development of the facile electrochemiluminescence (ECL) sensor for direct and sensitive analysis of antibiotics in complex samples. In this study, we demonstrated a flexible ECL sensor based on a cost-effective electrode covered with a VMSF for sensitive detection of clindamycin. Polyethylene terephthalate coated with indium tin oxide (PET-ITO) is applied as a flexible electrode to grow VMSF using the electrochemically assisted self-assembly (EASA) method. The negatively charged VMSF nanochannels exhibit significant enrichment toward the commonly used cationic ECL luminophores, tris(2,2-bipyridyl) dichlororuthenium (II) (Ru (bpy)32+). Using the enhanced ECL of Ru (bpy)32+ by clindamycin, the developed VMSF/PET-ITO sensor can sensitively detect clindamycin. The responses were linear in the concentration range of 10 nM–25 μM and in the concentration range of 25–70 μM. Owing to the nanoscale thickness of the VMSF and the high coupling stability with the electrode substrate, the developed flexible VMSF/PET-ITO sensor exhibits high signal stability during the continuous bending process. Considering high antifouling characteristic of the VMSF, direct analysis of clindamycin in a real biological sample, human serum, is realized.
Collapse
Affiliation(s)
- Xinjie Wei
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuai Xu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Fengna Xi, ; Tingting Zhao,
| | - Tingting Zhao
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
- *Correspondence: Fengna Xi, ; Tingting Zhao,
| |
Collapse
|
7
|
Zhou H, Ding Y, Su R, Lu D, Tang H, Xi F. Silica Nanochannel Array Film Supported by ß-Cyclodextrin-Functionalized Graphene Modified Gold Film Electrode for Sensitive and Direct Electroanalysis of Acetaminophen. Front Chem 2022; 9:812086. [PMID: 35096772 PMCID: PMC8792962 DOI: 10.3389/fchem.2021.812086] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Convenient and sensitive detection of active analytes in complex matrix is crucial in biological, medical, and environmental analysis. Silica nanochannel array film (SNF) equipped electrochemical sensors have shown excellent anti-fouling performance in direct analysis of complex samples. In this work, we demonstrated an electrochemical sensor with anti-fouling performance for highly sensitive detection of acetaminophen (APAP) based on SNF supported by ß-cyclodextrin-graphene (CDG) nanocomposite modified Au film electrode (AuF). Because of their rich surface hydroxyls and 2D lamellar structure, CDG on AuF can serve as the nanoadhesive for compact binding SNF, which can be grown by electrochemical assisted self-assembly method in a few seconds. Attributable to the electrocatalytic property of graphene and the synergistic enrichment from both CD and SNF nanochannels towards analyte, the SNF/CDG/AuF sensor demonstrates sensitive detection of acetaminophen ranged from 0.2 to 50 μM with an ultralow limit-of-detection of 14 nM. Taking advantage of the anti-fouling ability of SNF, the sensor is able to realize accurate and convenient analysis of APAP in commercially available paracetamol tablets.
Collapse
Affiliation(s)
- Huaxu Zhou
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yao Ding
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ruobing Su
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dongming Lu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Ramírez AM, Gacitúa MA, Díaz FR, del Valle MA. Charge Storage and Solar Rechargeable Battery Devices Based on Electrodes Electrochemically Modified with Conducting Polymer Nanowires. Polymers (Basel) 2021; 13:4375. [PMID: 34960927 PMCID: PMC8709196 DOI: 10.3390/polym13244375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, the use of nanostructured conducting polymer deposits on energy-storing devices is described. The cathode and the anode are electrochemically modified with nanowires of polypyrrole and poly(3,4-ethylenedioxythiophene), respectively, prepared after the use of a mesoporous silica template. The effect of aqueous or ionic liquid medium is assayed during battery characterization studies. The nanostructured device greatly surpasses the performance of the bulk configuration in terms of specific capacity, energy, and power. Moreover, compared with devices found in the literature with similar designs, the nanostructured device prepared here shows better battery characteristics, including cyclability. Finally, considering the semi-conducting properties of the components, the device was adapted to the design of a solar-rechargeable device by the inclusion of a titanium oxide layer and cis-bis(isothiocyanate)-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) dye. The device proved that the nanostructured design is also appropriate for the implementation of solar-rechargeable battery, although its performance still requires further optimization.
Collapse
Affiliation(s)
- Andrés Mauricio Ramírez
- Laboratorio de Electroquímica y Materiales Aplicados, Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile;
| | - Manuel Alejandro Gacitúa
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L.B. O’Higgins 3363, Santiago 7254758, Chile;
| | - Fernando Raúl Díaz
- Laboratorio de Electroquímica de Polímeros, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - María Angélica del Valle
- Laboratorio de Electroquímica de Polímeros, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
9
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
10
|
Gong J, Tang H, Luo X, Zhou H, Lin X, Wang K, Yan F, Xi F, Liu J. Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Front Chem 2021; 9:770512. [PMID: 34881226 PMCID: PMC8645553 DOI: 10.3389/fchem.2021.770512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional (3D) electrochemiluminescence (ECL) platform with high sensitivity and good anti-fouling is highly desirable for direct and sensitive analysis of complex samples. Herein, a novel ECL-sensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSF) on monolithic and macroporous 3D graphene (3DG). Through electrografting of 3-aminopropyltriethoxysilane (APTES) onto 3DG as molecular glue, VMSF grown by electrochemically assisted self-assembly (EASA) method fully covers 3DG surface and displays high stability. The developed VMSF/APTES/3DG sensor exhibits highly sensitized ECL response of tris(2,2'-bipyridyl) ruthenium (Ru (bpy)3 2+) taking advantages of the unique characteristics of 3DG (high active area and conductivity) and VMSF nanochannels (strong electrostatic enrichment). The VMSF/APTES/3DG sensor is applied to sensitively detect an important environmental pollutant (4-chlorophenol, with limit of detection or LOD of 30.3 nM) in term of its quenching effect (ECL signal-off mode) toward ECL of Ru (bpy)3 2+/tri-n-propylamine (TPrA). The VMSF/APTES/3DG sensor can also sensitively detect the most effective antihistamines chlorpheniramine (with LOD of 430 nM) using ECL signal-on mode because it acts as co-reactant to promote the ECL of Ru (bpy)3 2+. Combined with the excellent antifouling ability of VMSF, the sensor can also realize the analysis of actual environmental (lake water) and pharmaceutical (pharmacy tablet) samples. The proposed 3D ECL sensor may open new avenues to develop highly sensitive ECL-sensing platform.
Collapse
Affiliation(s)
- Jiawei Gong
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaxu Zhou
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueting Lin
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Kailong Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fei Yan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
11
|
Walcarius A. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Acc Chem Res 2021; 54:3563-3575. [PMID: 34469107 DOI: 10.1021/acs.accounts.1c00233] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular soft-templating approaches to mesoporous materials have revolutionized the generation of regular nanoarchitectures exhibiting unique features such as uniform pore structure with tunable dimensions, large surface area, and high pore volume, variability of composition, and/or ease of functionalization with a wide range of organo-functional groups or good hosts for the in situ synthesis of nano-objects. One appealing concept in this field is the development of ordered mesoporous thin films as such a configuration has proven to be essential for various applications including separation, sensing, catalysis (electro and photo), energy conversion and storage, photonics, solar cells, photo- and electrochromism, and low-k dielectric coatings for microelectronics, bio and nanobio devices, or biomimetic surfaces. Supported or free-standing mesoporous films are mostly prepared by evaporation induced self-assembly methods, thanks to their good processing capability and flexibility to manufacture mesostructured oxides and organic-inorganic hybrids films with periodically organized porosity.One important challenge is the control of pore orientation, especially in one-dimensional nanostructures, which is not straightforward from the above evaporation induced self-assembly methods. Accessibility of the pores represents another critical issue, which can be basically ensured in the event of effective interconnections between the pores, but the vertical alignment of mesopore channels will definitely offer the best configuration to secure the most efficient transfer processes through the mesoporous membranes. The orthogonal growth of mesochannels is however not thermodynamically favored, requiring the development of methods enabling self-organization through nonequilibrium states. We found that electrochemistry afforded a real boon to tackle this problem via the electrochemically assisted self-assembly (EASA) method, which not only provides a fast and versatile way to generate highly ordered and hexagonally packed mesopore channels but also constitutes a real platform for the development of functionalized oriented films carrying a wide range of organo-functional groups of adjustable composition and properties.This Account introduces the EASA concept and discusses its development along with the significant progress made from its discovery, notably in view of recent advances on the functionalization of oriented mesoporous silica films, which expand their fields of application. EASA is based on the in situ combination of electrochemically triggered pH-induced polycondensation of silica precursors with electrochemical interfacial surfactant templating, leading to the very fast (a few seconds) growth of vertically aligned silica walls through self-assembly around surfactant hemimicelles transiently formed onto the underlying support. This method benefits from the possibility to deposit uniform thin films onto surfaces of different natures and complex morphologies including at the microscale. From this discovery, our research expanded to cover domains beyond the simple production of bare silica films, turning to the challenge of incorporation and exploitation of organo-functional groups or nanofilaments. So far, the great majority of methods developed for the functionalization of mesoporous silica is based on postsynthesis grafting or co-condensation approaches, which suffer from serious limitations with oriented films (pore blocking, lack of ordering). We demonstrated the uniqueness of EASA combined with click chemistry to afford a versatile and universal route to oriented mesoporous films bearing organo-functional groups of multiple composition. This opened perspectives for future developments and applications, some of which (sensing, permselective coatings, energy storage, electrocatalysis, electrochromism) are also considered in this Account.
Collapse
Affiliation(s)
- Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), 405 Rue de Vandoeuvre, F-54000 Nancy, France
| |
Collapse
|
12
|
Synthesis of Vertically Aligned Porous Silica Thin Films Functionalized by Silver Ions. Int J Mol Sci 2021; 22:ijms22147505. [PMID: 34299121 PMCID: PMC8306079 DOI: 10.3390/ijms22147505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022] Open
Abstract
In this work, we have developed a chemical procedure enabling the preparation of highly ordered and vertically aligned mesoporous silica films containing selected contents of silver ions bonded inside the mesopore channels via anchoring propyl-carboxyl units. The procedure involves the electrochemically assisted self-assembly co-condensation of tetraethoxysilane and (3-cyanopropyl)triethoxysilane in the presence of cetyltrimethylammonium bromide as a surfactant, the subsequent hydrolysis of cyano groups into carboxylate ones, followed by their complexation with silver ions. The output materials have been electrochemically characterized with regard to the synthesis effectiveness in order to confirm and quantify the presence of the silver ions in the material. The mesostructure has been observed by transmission electron microscopy. We have pointed out that it is possible to finely tune the functionalization level by controlling the co-condensation procedure, notably the concentration of (3-cyanopropyl)triethoxysilane in the synthesis medium.
Collapse
|