1
|
Ning X, Zhan L, Zhou X, Luo J, Wang Y. In-situ Bi-modified Pt towards glycerol and formic acid electro-oxidation: Effects of catalyst structure and surface microenvironment on activity and selectivity. J Colloid Interface Sci 2024; 655:920-930. [PMID: 37979297 DOI: 10.1016/j.jcis.2023.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The performances of glycerol electro-oxidation reaction (GOR) and formic acid electro-oxidation reaction (FAOR) catalyzed by Pt catalyst were dramatically improved by adding Bi3+ into the reaction solution. The dynamic structure and microenvironment of in-situ Bi-modified Pt and their impact on the catalytic performances were revealed. A strong correlation was established between the Bi coverage of Pt-based catalysts and their resistance to CO poisoning and performance in GOR and FAOR. When Bi3+ increased to a certain amount, a Bi-shell containing hydroxides was formed on Pt surfaces except the formation of Pt-Bi ensemble. On Pt catalyst covered with 43.9 % Bi, the peak mass-specific activities of GOR and FAOR in forward scans were 4.2 and 34.7 times that of Pt/NCNTs, respectively. The peak electrochemical active surface area (ECSA)-specific activity of FAOR in forward scan for Pt with 52.6 % Bi coverage was 80.6 times that of Pt/NCNTs. The dehydrogenation process in FAOR and the 4-electron pathway in GOR were improved for Bi-modified Pt. The experimental results and DFT calculations indicated that the positively charged Bi and structure of Pt-Bi ensemble improved the adsorption and interaction of negatively charged intermediates, and the enhanced hydroxides facilitated the oxidation and removal of toxic intermediates, such as CO.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Jin Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Yanli Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
2
|
Lu Q, Gu X, Li J, Li W, Luque R, Eid K. Unraveling ultrasonic assisted aqueous-phase one-step synthesis of porous PtPdCu nanodendrites for methanol oxidation with a CO-poisoning tolerance. ULTRASONICS SONOCHEMISTRY 2023; 98:106494. [PMID: 37356216 PMCID: PMC10319326 DOI: 10.1016/j.ultsonch.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xilei Gu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaojiao Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
3
|
Abdelgawad A, Salah B, Eid K, Abdullah AM, Al-Hajri RS, Al-Abri M, Hassan MK, Al-Sulaiti LA, Ahmadaliev D, Ozoemena KI. Pt-Based Nanostructures for Electrochemical Oxidation of CO: Unveiling the Effect of Shapes and Electrolytes. Int J Mol Sci 2022; 23:15034. [PMID: 36499359 PMCID: PMC9737813 DOI: 10.3390/ijms232315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | - Kamel Eid
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | | | - Rashid S. Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, PC 123, SQU, Al-Khoudh 123, Oman
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, PC 123, SQU, A-Khoudh 123, Oman
| | | | - Leena A. Al-Sulaiti
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar
| | - Doniyorbek Ahmadaliev
- Andijan State Pedagogical Institute, Andijan 170100, Uzbekistan
- Presidential School in Andijan, Agency for Presidential Educational Institutions of the Republic of Uzbekistan, Andijan 170100, Uzbekistan
| | - Kenneth I. Ozoemena
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Pd-Nanoparticles Embedded Metal-Organic Framework-Derived Hierarchical Porous Carbon Nanosheets as Efficient Electrocatalysts for Carbon Monoxide Oxidation in Different Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11109-11120. [PMID: 36040806 DOI: 10.1021/acs.langmuir.2c01841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational synthesis of Co-ZIF-67 metal-organic framework (MOF)-derived carbon-supported metal nanoparticles is essential for various energy and environmental applications; however, their catalytic activity toward carbon monoxide (CO) oxidation in various electrolytes is not yet emphasized. Co-ZIF-67-derived hierarchical porous carbon nanosheet-supported Pd nanocrystals (Pd/ZIF-67/C) were prepared using a simple microwave-irradiation approach followed by carbonization and etching. Mechanistically, during microwave irradiation, triethyleneamine provides abundant reducing gases that promote the formation of Pd nanoparticles/Co-Nx in porous carbon nanosheets with the assistance of ethylene glycol and also form a multimodal pore size. The electrocatalytic CO oxidation activity and stability of Pd/ZIF-67/C outperformed those of commercial Pd/C and Pt/C catalysts by (4.2 and 4.4, 4.0 and 2.7, 3.59 and 2.7) times in 0.1 M HClO4, 0.1 M KOH, and 0.1 M NaHCO3, respectively, due to the catalytic properties of Pd besides the conductivity of Co-Nx active sites and delicate porous structures of ZIF-67. Notably, using Pd/ZIF-67/C results in a higher CO oxidation activity than Pd/C and Pt/C. This study may pave the way for using MOF-supported multi-metallic nanoparticles for CO oxidation electrocatalysis.
Collapse
Affiliation(s)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa
| |
Collapse
|
5
|
K Lebechi A, Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. NANOSCALE 2022; 14:10717-10737. [PMID: 35861592 DOI: 10.1039/d2nr02330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.
Collapse
Affiliation(s)
- Augustus K Lebechi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| |
Collapse
|
6
|
Controlled synthesis and M-position regulation of perovskite fluoride KMF3 (M=Co/Fe) with high-efficiency OER performance. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Lu Q, Eid K, Li W. Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2379. [PMID: 35889603 PMCID: PMC9316151 DOI: 10.3390/nano12142379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The continual rise of the CO2 concentration in the Earth's atmosphere is the foremost reason for environmental concerns such as global warming, ocean acidification, rising sea levels, and the extinction of various species. The electrochemical CO2 reduction (CO2RR) is a promising green and efficient approach for converting CO2 to high-value-added products such as alcohols, acids, and chemicals. Developing efficient and low-cost electrocatalysts is the main barrier to scaling up CO2RR for large-scale applications. Heteroatom-doped porous carbon-based (HA-PCs) catalysts are deemed as green, efficient, low-cost, and durable electrocatalysts for the CO2RR due to their great physiochemical and catalytic merits (i.e., great surface area, electrical conductivity, rich electrical density, active sites, inferior H2 evolution activity, tailorable structures, and chemical-physical-thermal stability). They are also easily synthesized in a high yield from inexpensive and earth-abundant resources that meet sustainability and large-scale requirements. This review emphasizes the rational synthesis of HA-PCs for the CO2RR rooting from the engineering methods of HA-PCs to the effect of mono, binary, and ternary dopants (i.e., N, S, F, or B) on the CO2RR activity and durability. The effect of CO2 on the environment and human health, in addition to the recent advances in CO2RR fundamental pathways and mechanisms, are also discussed. Finally, the evolving challenges and future perspectives on the development of heteroatom-doped porous carbon-based nanocatalysts for the CO2RR are underlined.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.L.); (W.L.)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.L.); (W.L.)
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Facile One-step Aqueous-phase Synthesis of Porous PtBi Nanosponges for Efficient Electrochemical Methanol Oxidation with a High CO Tolerance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|