1
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
2
|
Araújo VE, Ribeiro GC, De Amorim KP, Andrade LS. Cloud point method applied to the extraction and preconcentration of thiabendazole pesticide from whole grape juice samples and amperometric detection by HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4827-4834. [PMID: 38967314 DOI: 10.1039/d4ay00850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A cloud point method was developed and applied for the first time to extract and preconcentrate thiabendazole (TBZ) from commercial whole grape juice samples, with determination by high performance liquid chromatography coupled to electrochemical detection (HPLC/EC), using a cathodically pretreated boron-doped diamond electrode (BDD). The best conditions for extraction and preconcentration of TBZ by cloud point extraction (CPE) were performed at pH 6.0, by adding 1 mL of the surfactant Tergitol TMN-6 at 10% (mass-to-mass ratio), without heating (at 27 °C) and ultrasonic stirring time of (20 kHz) for 60 min. The HPLC/EC determination was duly validated in a C8 column, in mobile phase with a 69 : 31 ratio (V/V) of phosphate buffer (pH 7.0):ACN, at a flow rate of 1.2 mL min-1 and electrochemical detection with BDD electrode by applying 1.40 V × Ag/AgCl (3.0 mol L-1). Under these conditions, the procedure showed a preconcentration factor (FC) of 21.7, and limits of detection (LOD) and quantification (LOQ) of 6.64 × 10-9 mol L-1 (or 1.33 μg L-1) and 1.66 × 10-8 mol L-1 (or 3.34 μg L-1), respectively. The method provided a percent recovery of 81% to 98%, with a coefficient of variation between 3% and 15%.
Collapse
Affiliation(s)
- Vinícius E Araújo
- Chemistry Institute, Federal University of Catalão, 75704-020 Catalão, GO, Brazil.
| | - Gabriela C Ribeiro
- Chemistry Institute, Federal University of Catalão, 75704-020 Catalão, GO, Brazil.
| | - Kamila P De Amorim
- Chemistry Institute, Federal University of Catalão, 75704-020 Catalão, GO, Brazil.
| | - Leonardo S Andrade
- Chemistry Institute, Federal University of Catalão, 75704-020 Catalão, GO, Brazil.
| |
Collapse
|
3
|
Ramos DLO, de Faria LV, Alves DAC, Muñoz RAA, Dos Santos WTP, Richter EM. Electrochemical platform produced by 3D printing for analysis of small volumes using different electrode materials. Talanta 2023; 265:124832. [PMID: 37354624 DOI: 10.1016/j.talanta.2023.124832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Fused deposition modeling (FDM) 3D printing is a promising additive manufacturing technique to produce low-cost disposable electrochemical devices. However, the print of devices like well-known screen-printed electrodes (all electrodes on the same device) is difficult using the available technology (few materials available for production of working electrodes). In this paper we present a procedure to produce disposable and robust electrochemical devices by FDM 3D printing that allows reproducible analysis of small volumes (50-2000 μL). The device consists of just two printed parts that allow easy coupling of different conductive materials for using as disposable or non-disposable working electrodes with reproducible geometric area. Printed counter and pseudo-reference electrodes can also be easily fitted into the microcell. Moreover, conventional counter (platinum wire) and mini reference electrodes can also be used. As a proof of concept, paracetamol, cocaine and uric acid were used as model analytes using different materials as working electrodes. Linear calibration curves (r > 0.99) with similar slopes (0.29 ± 0.01 μA μmol L-1; RSD = 3.4%) were obtained by square wave voltammetry (SWV) using a complete printed system and different volumes of standard solutions of paracetamol (50, 100, and 200 μL). For uric acid, a linear range of 10-125 μmol L-1 (r > 0.99), was obtained using differential pulse voltammetry as the electrochemical technique and a disposable laser-induced graphene base as the working electrode. With the coupling of boron-doped diamond working electrode, screening tests were successfully performed in seized cocaine samples with selective detection of cocaine in the presence of its most common adulterants. The production cost per unit of a complete electrochemical system is around US 5.00. In large-scale production, only the working electrode needs to be replaced while the microcell and counter/pseudo reference electrodes do not need to be discarded.
Collapse
Affiliation(s)
- David L O Ramos
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Lucas V de Faria
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Diego A C Alves
- Faculty of Mechanical Engineering, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Wallans T P Dos Santos
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, 39100-000, Diamantina, Minas Gerais, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Liu Z, Baluchová S, Brocken B, Ahmed E, Pobedinskas P, Haenen K, Buijnsters JG. Inkjet Printing-Manufactured Boron-Doped Diamond Chip Electrodes for Electrochemical Sensing Purposes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39915-39925. [PMID: 37556596 PMCID: PMC10450640 DOI: 10.1021/acsami.3c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Fabrication of patterned boron-doped diamond (BDD) in an inexpensive and straightforward way is required for a variety of practical applications, including the development of BDD-based electrochemical sensors. This work describes a simplified and novel bottom-up fabrication approach for BDD-based three-electrode sensor chips utilizing direct inkjet printing of diamond nanoparticles on silicon-based substrates. The whole seeding process, accomplished by a commercial research inkjet printer with piezo-driven drop-on-demand printheads, was systematically examined. Optimized and continuous inkjet-printed features were obtained with glycerol-based diamond ink (0.4% vol/wt), silicon substrates pretreated by exposure to oxygen plasma and subsequently to air, and applying a dot density of 750 drops (volume 9 pL) per inch. Next, the dried micropatterned substrate was subjected to a chemical vapor deposition step to grow uniform thin-film BDD, which satisfied the function of both working and counter electrodes. Silver was inkjet-printed to complete the sensor chip with a reference electrode. Scanning electron micrographs showed a closed BDD layer with a typical polycrystalline structure and sharp and well-defined edges. Very good homogeneity in diamond layer composition and a high boron content (∼2 × 1021 atoms cm-3) was confirmed by Raman spectroscopy. Important electrochemical characteristics, including the width of the potential window (2.5 V) and double-layer capacitance (27 μF cm-2), were evaluated by cyclic voltammetry. Fast electron transfer kinetics was recognized for the [Ru(NH3)6]3+/2+ redox marker due to the high doping level, while somewhat hindered kinetics was observed for the surface-sensitive [Fe(CN)6]3-/4- probe. Furthermore, the ability to electrochemically detect organic compounds of different structural motifs, such as glucose, ascorbic acid, uric acid, tyrosine, and dopamine, was successfully verified and compared with commercially available screen-printed BDD electrodes. The newly developed chip-based manufacture method enables the rapid prototyping of different small-scale electrode designs and BDD microstructures, which can lead to enhanced sensor performance with capability of repeated use.
Collapse
Affiliation(s)
- Zhichao Liu
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Simona Baluchová
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Bob Brocken
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Essraa Ahmed
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC, IMEC
vzw, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC, IMEC
vzw, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC, IMEC
vzw, Wetenschapspark
1, 3590 Diepenbeek, Belgium
| | - Josephus G. Buijnsters
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
5
|
Araújo DS, Arantes LC, Faria LV, Souza KA, Pimentel DM, Barbosa SL, Richter EM, Muñoz RA, dos Santos WT. Electrochemistry of 5F-MDMB-PICA synthetic cannabinoid using a boron-doped diamond electrode with short anodic-cathodic pretreatment: A simple screening method for application in forensic analysis. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Einaga Y. Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications. Acc Chem Res 2022; 55:3605-3615. [PMID: 36475616 DOI: 10.1021/acs.accounts.2c00597] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Boron-doped diamond (BDD) electrodes have emerged as next-generation electrode materials for various applications in electrochemistry such as electrochemical sensors, electrochemical organic synthesis, CO2 reduction, ozone water generation, electrochemiluminescence, etc. An optimal BDD electrode design is necessary to realize these applications. The electrochemical properties of BDD electrodes are determined by important parameters such as (1) surface termination, (2) surface orientation, and (3) boron doping level.In this Account, we discuss how these parameters contribute to the function of BDD electrodes. First, control of the surface termination (hydrogen/oxygen) is described. The electrochemical conditions such as the solution pH and the application potential were studied precisely. It was confirmed that an acidic solution and the application of negative potential accelerate hydrogenation, and the mechanism behind this is discussed. For oxygenation, we directly observed changes in surface functional groups by in situ attenuated total reflection infrared spectroscopy and electrochemical X-ray photoelectron spectroscopy measurements.Next, the difference in surface orientation was examined. We prepared homoepitaxial single-crystal diamond electrodes comprising (100) and (111) facets with similar boron concentrations and resistivities and evaluated their electrochemical properties. Experimental results and theoretical calculations revealed that (100)-oriented single-crystal BDD has a wider space charge layer than (111)-oriented BDD, resulting in a slower response. Furthermore, isolated single-crystal microparticles of BDD with exposed (100) and (111) crystal facets were grown, and we studied the electrochemical properties of the respective facets by combination with hopping-mode scanning electrochemical cell microscopy.We also systematically investigated how the boron concentration and sp2 species affect the electrochemical properties. The results showed that the appropriate composition (boron and sp2 species level) is dependent on the application. The transmission electron microscopy images and electron energy loss spectra of highly boron-doped BDD are shown, and the relationship between the composition and electrochemical properties is discussed. Finally, we investigated in detail the effect of the sp2 component on low-doped BDD. Surprisingly, although the sp2 component is usually expected to induce a narrowing of the potential window and an increase in the charging current, low-doped BDD showed the opposite trend depending on the degree of sp2 carbon.The results and discussion presented in this Account will hopefully promote a better understanding of the fundamentals of BDD electrodes and be useful for the optimal development of electrodes for future applications.
Collapse
Affiliation(s)
- Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Sanches AM, C. Prete M, Matos R, Tarley CRT, Medeiros RA. Flow Injection Analysis System Coupled to Chronoamperometry and Boron-Doped Diamond Electrode for Determination of Synthetic Hormones 17α-Ethinylestradiol and Cyproterone Acetate. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2089677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Aline M. Sanches
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Maiyara C. Prete
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Roberto Matos
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - César R. Teixeira Tarley
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brasil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brasil
| | - Roberta A. Medeiros
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brasil
| |
Collapse
|
8
|
Portable amperometric method for selective determination of caffeine in samples with the presence of interfering electroactive chemical species. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Baluchová S, Brycht M, Taylor A, Mortet V, Krůšek J, Dittert I, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Enhancing electroanalytical performance of porous boron-doped diamond electrodes by increasing thickness for dopamine detection. Anal Chim Acta 2021; 1182:338949. [PMID: 34602205 DOI: 10.1016/j.aca.2021.338949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 μF cm-2 to 1060 μF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 μA μmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 μA μmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 μmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.
Collapse
Affiliation(s)
- Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic; FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Mariola Brycht
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Łódź, Poland
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01, Kladno, Czech Republic
| | - Jan Krůšek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ivan Dittert
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
10
|
Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes. MATERIALS 2021; 14:ma14174971. [PMID: 34501059 PMCID: PMC8433647 DOI: 10.3390/ma14174971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Electrochemical oxidation (EO) of organic compounds and ammonium in the complex matrix of landfill leachates (LLs) was investigated using three different boron-doped diamond electrodes produced on silicon substrate (BDD/Si)(levels of boron doping [B]/[C] = 500, 10,000, and 15,000 ppm—0.5 k; 10 k, and 15 k, respectively) during 8-h tests. The LLs were collected from an old landfill in the Pomerania region (Northern Poland) and were characterized by a high concentration of N-NH4+ (2069 ± 103 mg·L−1), chemical oxygen demand (COD) (3608 ± 123 mg·L−1), high salinity (2690 ± 70 mg Cl−·L−1, 1353 ± 70 mg SO42−·L−1), and poor biodegradability. The experiments revealed that electrochemical oxidation of LLs using BDD 0.5 k and current density (j) = 100 mA·cm−2 was the most effective amongst those tested (C8h/C0: COD = 0.09 ± 0.14 mg·L−1, N-NH4+ = 0.39 ± 0.05 mg·L−1). COD removal fits the model of pseudo-first-order reactions and N-NH4+ removal in most cases follows second-order kinetics. The double increase in biodegradability index—to 0.22 ± 0.05 (BDD 0.5 k, j = 50 mA·cm−2) shows the potential application of EO prior biological treatment. Despite EO still being an energy consuming process, optimum conditions (COD removal > 70%) might be achieved after 4 h of treatment with an energy consumption of 200 kW·m−3 (BDD 0.5 k, j = 100 mA·cm−2).
Collapse
|
11
|
Simple and rapid voltammetric method for the detection of the synthetic adulterant fluoxetine in weight loss products. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Freitas JM, Silva PR, Munoz RA, Richter EM. Fast and portable voltammetric method for the determination of the amphetamine adulterant ephedrine in natural over-the-counter weight-loss products. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Castro SV, Silva CV, Stefano JS, Richter EM, Munoz RA. Voltammetric determination of traces of 4-chloroaniline in antiseptic samples on a cathodically-treated boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sarakhman O, Švorc Ľ. A Review on Recent Advances in the Applications of Boron-Doped Diamond Electrochemical Sensors in Food Analysis. Crit Rev Anal Chem 2020; 52:791-813. [PMID: 33028086 DOI: 10.1080/10408347.2020.1828028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The usage of boron-doped diamond (BDD) material has found to be very attractive in modern electroanalytical methods and received massive consideration as perspective electrochemical sensor due to its outstanding (electro)chemical properties. These generally known facilities include large potential window, low background currents, ability to withstand extreme potentials and strong tendency to resist fouling compared to conventional carbon-based electrodes. As evidence of superiority of this material, couple of reviews describing the overview of various applications of BDD electrodes in the field of analytical and material chemistry has been reported in scientific literature during last decade. However, herein proposed review predominantly focuses on the most recent developments (from 2009 to 2020) dealing with the application of BDD as an advanced and environmental-friendly sensor platform in food analysis. The main method characteristics of analysis of various organic food components with different chemical properties, including additives, flavor and aroma components, phenolic compounds, flavonoids and pesticides in food matrices are described in more details. The importance of BDD surface termination, presence of sp2 content and boron doping level on electrochemical sensing is discussed. Apart from this, a special attention is paid to the evaluation of main analytical characteristics of the BDD electrochemical sensor in single- and multi-analyte detection mode in food analysis. The recent achievements in the utilizing of BDD electrodes in amperometric detection coupled to flow injection analysis, batch injection analysis, and high-performance liquid chromatography are also commented. Moreover, actual trends in sample preparation techniques prior to electrochemical sensing in food analysis are referred.
Collapse
Affiliation(s)
- Olha Sarakhman
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
15
|
Freitas JM, Wachter N, Rocha-Filho RC. Determination of bisphenol S, simultaneously to bisphenol A in different water matrices or solely in electrolyzed solutions, using a cathodically pretreated boron-doped diamond electrode. Talanta 2020; 217:121041. [DOI: 10.1016/j.talanta.2020.121041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
16
|
Hanawa A, Ogata G, Sawamura S, Asai K, Kanzaki S, Hibino H, Einaga Y. In Vivo Real-Time Simultaneous Examination of Drug Kinetics at Two Separate Locations Using Boron-Doped Diamond Microelectrodes. Anal Chem 2020; 92:13742-13749. [PMID: 32786440 DOI: 10.1021/acs.analchem.0c01707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.
Collapse
Affiliation(s)
- Ai Hanawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Ribeiro FWP, de Oliveira RC, de Oliveira AG, Nascimento RF, Becker H, de Lima-Neto P, Correia AN. Electrochemical sensing of thiabendazole in complex samples using boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Xie J, Ma J, Zhang C, Kong X, Wang Z, Waite TD. Effect of the Presence of Carbon in Ti 4O 7 Electrodes on Anodic Oxidation of Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5227-5236. [PMID: 32202775 DOI: 10.1021/acs.est.9b07398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnéli phase titanium suboxide, Ti4O7, has attracted increasing attention as a potential electrode material in anodic oxidation as a result of its high efficiency and (electro)chemical stability. Although carbon materials have been amended to Ti4O7 electrodes to enhance the electrochemical performance or are present as an unwanted residual during the electrode fabrication, there has been no comprehensive investigation of how these carbon materials affect the electrochemical performance of the resultant Ti4O7 electrodes. As such, we investigated the electrochemical properties of Ti4O7 electrodes impregnated with carbon materials at different contents (and chemical states). Results of this study showed that while pure Ti4O7 electrodes exhibited an extremely low rate of interfacial electron transfer, the introduction of minor amounts of carbon materials (at values as low as 0.1 wt %) significantly facilitated the electron transfer process and decreased the oxygen evolution reaction potential. The oxygen-containing functional groups have been shown to play an important role in interfacial electron transfer with moderate oxidation of the carbon groups aiding electron uptake at the electrode surface (and consequently organic oxidation) while the generation of carboxyl groups-a process that is likely to occur in long-term operation-increased the interfacial resistance and thus retarded the oxidation process. Results of this study provide a better understanding of the relationship between the nature of the electrode surface and anodic oxidation performance with these insights likely to facilitate improved electrode design and optimization of operation of anodic oxidation reactors.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiangtong Kong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- University of New South Wales Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
19
|
Lourencao BC, Brocenschi RF, Medeiros RA, Fatibello‐Filho O, Rocha‐Filho RC. Analytical Applications of Electrochemically Pretreated Boron‐Doped Diamond Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruna C. Lourencao
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Ricardo F. Brocenschi
- Centro de Estudos do Mar Universidade Federal do Paraná (UFPR) C.P. 61 83255-976 Pontal do Paraná – PR Brazil
| | - Roberta A. Medeiros
- Departamento de Química Universidade Estadual de Londrina (UEL) C.P. 10.011 86057-970 Londrina – PR Brazil
| | - Orlando Fatibello‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Romeu C. Rocha‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| |
Collapse
|
20
|
Santos AM, Silva TA, Vicentini FC, Fatibello-Filho O. Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113756] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Baluchová S, Taylor A, Mortet V, Sedláková S, Klimša L, Kopeček J, Hák O, Schwarzová-Pecková K. Porous boron doped diamond for dopamine sensing: Effect of boron doping level on morphology and electrochemical performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
24
|
Freitas JM, Oliveira TDC, Munoz RAA, Richter EM. Boron Doped Diamond Electrodes in Flow-Based Systems. Front Chem 2019; 7:190. [PMID: 31024886 PMCID: PMC6463006 DOI: 10.3389/fchem.2019.00190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Boron-doped diamond (BDD) electrodes present several notable properties, such as the largest potential window of all electrode materials (especially in anodic potentials), low background and capacitive currents, reduced fouling compared to other electrodes, mechanical robustness, and good stability over time. On the other hand, flow-based systems are known as well-established approaches to minimize reagent consumption and waste generation and with good compromise between sample throughput and analytical performance (mechanization of chemical assays). This review focuses on the use of BDD electrodes for electrochemical detection in flow systems, such as flow injection analysis (FIA), batch injection analysis (BIA), high performance liquid chromatography (HPLC), and capillary electrophoresis (CE). The discussion deals with the historical evolution of BDD, types of electrochemical pre-treatments (cathodically/H-terminated or anodically/O-terminated), cell configurations, and analytical performance. Articles are discussed in chronological order and subdivided according to the type of flow system: FIA, BIA, HPLC, and CE.
Collapse
|
25
|
Sousa CP, Ribeiro FWP, Oliveira TMBF, Salazar‐Banda GR, de Lima‐Neto P, Morais S, Correia AN. Electroanalysis of Pharmaceuticals on Boron‐Doped Diamond Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201801742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Camila P. Sousa
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Francisco W. P. Ribeiro
- Instituto de Formação de EducadoresUniversidade Federal do Cariri Rua Olegário Emídio de Araújo Centro 63260-000 Brejo Santo, CE Brazil
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e TecnologiaUniversidade Federal do Cariri Av. Tenente Raimundo Rocha, Cidade Universitária 63048-080 Juazeiro do Norte, CE Brazil
| | - Giancarlo R. Salazar‐Banda
- Instituto de Tecnologia e Pesquisa/ Programa de Pós-Graduação em Engenharia de ProcessosUniversidade Tiradentes 49032-490 Aracaju, SE Brazil
| | - Pedro de Lima‐Neto
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Simone Morais
- REQUIMTE-LAQVInstituto Superior de Engenharia do Porto Instituto Politécnico do Porto R. Dr. António Bernardino de Almeida 431
| | - Adriana N. Correia
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| |
Collapse
|
26
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
27
|
Yamaguchi C, Natsui K, Iizuka S, Tateyama Y, Einaga Y. Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment. Phys Chem Chem Phys 2019; 21:13788-13794. [DOI: 10.1039/c8cp07402j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It was systematically demonstrated that the electrochemical properties of fluorinated boron-doped diamond electrodes could be attributed to interfacial band bending.
Collapse
Affiliation(s)
- Chizu Yamaguchi
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Keisuke Natsui
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Shota Iizuka
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
- ACCEL
| |
Collapse
|
28
|
Gomez-Ruiz B, Diban N, Urtiaga A. Comparison of microcrystalline and ultrananocrystalline boron doped diamond anodes: Influence on perfluorooctanoic acid electrolysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
da Costa Oliveira T, Santana MHP, Banks CE, Munoz RAA, Richter EM. Electrochemical Portable Method for On‐Site Screening of Scopolamine in Beverage and Urine Samples. ELECTROANAL 2018. [DOI: 10.1002/elan.201800707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thiago da Costa Oliveira
- Institute of ChemistryFederal University of Uberlandia Av. João Naves de Ávila, 2121 – Bairro Santa Mônica 38400-902 Uberlandia, Minas Gerais Brazil
| | - Mário H. P. Santana
- Technical and Scientific Unit – Regional Superintendence of Federal Police in Minas Gerais 38408-680 Uberlandia, MG Brazil
| | - Craig E. Banks
- Faculty of Science and EngineeringManchester Metropolitan University Chester Street Manchester, M1 5GD UK
| | - Rodrigo Alejandro Abarza Munoz
- Institute of ChemistryFederal University of Uberlandia Av. João Naves de Ávila, 2121 – Bairro Santa Mônica 38400-902 Uberlandia, Minas Gerais Brazil
- National Institute of Bioanalytical Science and Technology, Campinas/SP 13083-861 Brazil
| | - Eduardo Mathias Richter
- Institute of ChemistryFederal University of Uberlandia Av. João Naves de Ávila, 2121 – Bairro Santa Mônica 38400-902 Uberlandia, Minas Gerais Brazil
- National Institute of Bioanalytical Science and Technology, Campinas/SP 13083-861 Brazil
- Faculty of Science and EngineeringManchester Metropolitan University Chester Street Manchester, M1 5GD UK
| |
Collapse
|
30
|
Garcia de Freitas Junior G, Florêncio TM, Mendonça RJ, Salazar‐Banda GR, Oliveira RTS. Simultaneous Voltammetric Determination of Benzene, Toluene and Xylenes (BTX) in Water Using a Cathodically Pre‐Treated Boron‐Doped Diamond Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201800661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Geraldo Garcia de Freitas Junior
- Instituto de Ciências Biológicas e NaturaisUniversidade Federal do Triângulo MineiroPrograma de Pós-graduação Multicêntrico em Química de Minas Gerais 38025-180 Uberaba, MG Brazil
| | - Tayla M. Florêncio
- Instituto de Ciências Biológicas e NaturaisUniversidade Federal do Triângulo MineiroPrograma de Pós-graduação Multicêntrico em Química de Minas Gerais 38025-180 Uberaba, MG Brazil
| | - Ricardo J. Mendonça
- Instituto de Ciências Biológicas e NaturaisUniversidade Federal do Triângulo MineiroPrograma de Pós-graduação Multicêntrico em Química de Minas Gerais 38025-180 Uberaba, MG Brazil
| | - Giancarlo R. Salazar‐Banda
- Laboratório de Eletroquímica e NanotecnologiaInstituto de Tecnologia e PesquisaPrograma de Pós-graduação em Engenharia de ProcessosUniversidade Tiradentes 49032-490 Aracaju, SE Brazil
| | - Robson T. S. Oliveira
- Instituto de Ciências Biológicas e NaturaisUniversidade Federal do Triângulo MineiroPrograma de Pós-graduação Multicêntrico em Química de Minas Gerais 38025-180 Uberaba, MG Brazil
| |
Collapse
|
31
|
Rocha LR, D'Elia E, Medeiros RA, Tarley CRT. Electroanalytical Determination of Morpholine as a Corrosion Inhibitor at a Cathodically Pretreated Boron-Doped Diamond Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1515953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Luana Rianne Rocha
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Eliane D'Elia
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Antigo Medeiros
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - César Ricardo Teixeira Tarley
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
- Departamento de Química Analítica, Instituto de Química, Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
32
|
|
33
|
Azevedo GC, Castro RHS, Matos MAC, Matos RC. Amperometric Determination of Hydrogen Peroxide in Whitening Gels Using Boron-doped Diamond Electrode. ANAL SCI 2018; 34:913-917. [PMID: 30101886 DOI: 10.2116/analsci.17p491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this work was to develop an electrochemical cell and a methodology based on an amperometric determination of hydrogen peroxide in whitening gel samples under a boron-doped diamond electrode using flow injection analysis. Different parameters were evaluated to obtain the best conditions of analysis: among them, the flow of electrolyte at 2.8 mL min-1, the loop sampling 175 μL (28.5 cm), an analytical length of 159 μL (25 cm) and an applied potential of +0.60 V vs. Ag/AgCl(sat). The proposed method was suitable in terms of precision of results (RSD <10%); the accuracy was confirmed in the analysis of the gels through addition and recovery studies with results between 74 and 107%. The method was then applied to the analysis of tooth-whitening gel samples, acquired in different cities of the region. Regarding the results, a medium concentration value of 2.39% (w/w) was observed.
Collapse
Affiliation(s)
- Gustavo C Azevedo
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora
| | - Roberto H S Castro
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora
| | - Maria Auxiliadora C Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora
| | - Renato Camargo Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora
| |
Collapse
|
34
|
Facet‐Resolved Electrochemistry of Polycrystalline Boron‐Doped Diamond Electrodes: Microscopic Factors Determining the Solvent Window in Aqueous Potassium Chloride Solutions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Oliveira TDC, Freitas JM, Muñoz RAA, Richter EM. Development of a Novel Versatile Method for Determination of two Antihistamines in Association with Naphazoline Using Cathodically Pretreated Boron-doped Diamond Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201700658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thiago da Costa Oliveira
- Institute of Chemistry; Federal University of Uberlândia; Av. João Naves de Ávila, 2121 Santa Mônica, Uberlândia, MG, CEP 38400-902 Brazil
| | - Jhonys Machado Freitas
- Institute of Chemistry; Federal University of Uberlândia; Av. João Naves de Ávila, 2121 Santa Mônica, Uberlândia, MG, CEP 38400-902 Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Institute of Chemistry; Federal University of Uberlândia; Av. João Naves de Ávila, 2121 Santa Mônica, Uberlândia, MG, CEP 38400-902 Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry; Federal University of Uberlândia; Av. João Naves de Ávila, 2121 Santa Mônica, Uberlândia, MG, CEP 38400-902 Brazil
| |
Collapse
|
36
|
Machado Alencar L, Backes dos Santos R, de Jesus Guedes T, Torres Pio dos Santos W, Batista Gomes de Souza J, Souza Ferreira V, Amorim Bezerra da Silva R. Fast and Selective Simultaneous Determination of Acetaminophen, Aspirin and Caffeine in Pharmaceutical Products by Batch Injection Analysis with Multiple Pulse Amperometric Detection. ELECTROANAL 2017. [DOI: 10.1002/elan.201700721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Letícia Machado Alencar
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Rafael Backes dos Santos
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri; 39100-000 Diamantina, MG Brazil
| | - Wallans Torres Pio dos Santos
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri; 39100-000 Diamantina, MG Brazil
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri; 39100-000 Diamantina, MG Brazil
| | | | - Valdir Souza Ferreira
- Instituto de Química; Universidade Federal de Mato Grosso do Sul; 79074-460 Campo Grande, MS Brazil
| | - Rodrigo Amorim Bezerra da Silva
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
- Instituto de Química; Universidade Federal de Uberlândia; 38500-000 Monte Carmelo, MG Brazil
| |
Collapse
|
37
|
Positive shift in the potential of photo-electrochemical CO2 reduction to CO on Ag-loaded boron-doped diamond electrode by an electrochemical pre-treatment. J APPL ELECTROCHEM 2017. [DOI: 10.1007/s10800-017-1132-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Kasahara S, Natsui K, Watanabe T, Yokota Y, Kim Y, Iizuka S, Tateyama Y, Einaga Y. Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. Anal Chem 2017; 89:11341-11347. [DOI: 10.1021/acs.analchem.7b02129] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seiji Kasahara
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Keisuke Natsui
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Takeshi Watanabe
- Department
of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| | - Yasuyuki Yokota
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yousoo Kim
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shota Iizuka
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
Research and Services Division of Materials Data and Integrated System
(MaDIS), National Institute of Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Tateyama
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
Research and Services Division of Materials Data and Integrated System
(MaDIS), National Institute of Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
- ACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan
| |
Collapse
|
39
|
Garcia Cardozo C, Melo Cardoso R, Matheus Guimarães Selva T, Evaristo de Carvalho A, Torres Pio dos Santos W, Regis Longo Cesar Paixão T, Amorim Bezerra da Silva R. Batch Injection Analysis-Multiple Pulse Amperometric Fingerprint: A Simple Approach for Fast On-site Screening of Drugs. ELECTROANAL 2017. [DOI: 10.1002/elan.201700520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Camila Garcia Cardozo
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Rafael Melo Cardoso
- Instituto de Química; Universidade Federal de Uberlândia; 38400-902 Uberlândia, MG Brazil
| | - Thiago Matheus Guimarães Selva
- Instituto de Química; Universidade de São Paulo; 05508-000 São Paulo, SP Brazil
- Instituto Federal de Educação; Ciência e Tecnologia de Pernambuco; 50740-545 Recife, PE Brazil
| | - Adriana Evaristo de Carvalho
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri; 39100-000 Diamantina - MG Brazil
| | | | - Rodrigo Amorim Bezerra da Silva
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
- Instituto de Química; Universidade Federal de Uberlândia; 38400-902 Uberlândia, MG Brazil
| |
Collapse
|
40
|
Moraes JT, Salamanca-Neto CAR, Švorc Ľ, Sartori ER. Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Gayen P, Chaplin BP. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27638-27648. [PMID: 28749130 DOI: 10.1021/acsami.7b06028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO4- formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO4- formation decreased from rates of 0.45 ± 0.03 mmol m-2 min-1 during 1 mM NaClO3 oxidation and 0.28 ± 0.01 mmol m-2 min-1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (<0.12 μmoles m-2 min-1) for the BDD electrode functionalized by a 1H,1H,2H,2H-perfluorodecyltrichlorosilane SAM. These decreases in rates corresponded to 99.94 and 99.85% decreases in selectivity for ClO4- formation during the electrolysis of 10 mM NaCl and 1 mM NaClO3 electrolytes, respectively. By contrast, the oxidation rates of phenol were reduced by only 16.3% in the NaCl electrolyte and 61% in a nonreactive 0.1 M KH2PO4 electrolyte. Cyclic voltammetry with Fe(CN)63-/4- and Fe3+/2+ redox couples indicated that the long fluorinated chains created a blocking layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH• production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m-2 min-1) for up to 10 consecutive NaClO3 oxidation experiments.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
43
|
Schwarzová-Pecková K, Vosáhlová J, Barek J, Šloufová I, Pavlova E, Petrák V, Zavázalová J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Irkham, Watanabe T, Einaga Y. Hydroxide Ion Oxidation in Aqueous Solutions Using Boron-Doped Diamond Electrodes. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Irkham
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takeshi Watanabe
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
- JST-ACCEL, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
45
|
Thostenson JO, Ngaboyamahina E, Sellgren KL, Hawkins BT, Piascik JR, Klem EJD, Parker CB, Deshusses MA, Stoner BR, Glass JT. Enhanced H 2O 2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16610-16619. [PMID: 28471651 PMCID: PMC5437662 DOI: 10.1021/acsami.7b01614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods.
Collapse
Affiliation(s)
- James O. Thostenson
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Edgard Ngaboyamahina
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Katelyn L. Sellgren
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Brian T. Hawkins
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Jeffrey R. Piascik
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Ethan J. D. Klem
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Charles B. Parker
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Marc A. Deshusses
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Brian R. Stoner
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Jeffrey T. Glass
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
- E-mail:
| |
Collapse
|
46
|
Silva WP, Silva LAJ, França CH, Sousa RMF, Muñoz RAA, Richter EM. Square-wave Voltammetric Determination of Propyphenazone, Paracetamol, and Caffeine: Comparative Study between Batch Injection Analysis and Conventional Electrochemical Systems. ELECTROANAL 2017. [DOI: 10.1002/elan.201700160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weberson P. Silva
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| | - Luiz A. J. Silva
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| | - Clarice H. França
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| | - Raquel M. F. Sousa
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| | - Rodrigo A. A. Muñoz
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| | - Eduardo M. Richter
- Instituto de Química; Universidade Federal de Uberlândia; Av. João Naves de Ávila 2121 Uberlândia, MG Brasil
| |
Collapse
|
47
|
Rosa TR, Betim FS, Ferreira RDQ. Development and application of a labmade apparatus using open-source “arduino” hardware for the electrochemical pretreatment of boron-doped diamond electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Costa DJ, Santos JC, Sanches-Brandão FA, Ribeiro WF, Salazar-Banda GR, Araujo MC. Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Domínguez JR, Muñoz-Peña MJ, González T, Palo P, Cuerda-Correa EM. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20315-20330. [PMID: 27449015 DOI: 10.1007/s11356-016-7175-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO -. The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
Collapse
Affiliation(s)
- Joaquín R Domínguez
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Maria J Muñoz-Peña
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Teresa González
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Patricia Palo
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Eduardo M Cuerda-Correa
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain.
| |
Collapse
|
50
|
Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci Rep 2016; 6:32429. [PMID: 27599852 PMCID: PMC5013270 DOI: 10.1038/srep32429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R(2) = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.
Collapse
|