1
|
Li J, Wang Y, Guo F, Chen J, Wang J, Fan X, Li B, Verma SK, Wei Q, Yan L, Wu J. Efficient catalytic degradation of methylene blue by a novel Fe 3+-TiO 2@CGS three-dimensional photoelectric system. Front Chem 2022; 10:1065003. [PMID: 36561145 PMCID: PMC9763565 DOI: 10.3389/fchem.2022.1065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, a novel three-dimensional photoelectric system was designed and constructed for the degradation of methylene blue (MB) via photocatalysis, electrocatalysis, and photoelectric catalysis. To this end, a Ti/RuO2-IrO2-SnO2-CeO2 electrode was prepared via a thermal oxidation coating method and used as a dimensionally-stable anode (DSA). The cathode was made of a titanium sheet with Fe3+-doped TiO2 loaded on coal gasification slag (CGS) (Fe3+-TiO2@CGS) as a photocatalyst. The factors affecting the degradation efficiency, such as the supporting electrolyte, current density, and initial pH were systematically investigated. The results revealed Fe3+-TiO2@CGS three-dimensional photoelectric system exhibiting efficient synergistic performance of photocatalysis and electrocatalysis with a synergistic factor of 1.11. Photo-generated holes (h+) were generated by light irradiation and direct anodic oxidation. Furthermore, hydroxyl radicals (HO·) radicals were induced via other pathways. Such active species showed highly-oxidizing abilities, beneficial to the degradation of methylene blue (MB). The representative Fe3+-TiO2@CGS three-dimensional photoelectric system showed super high degradation efficiency at pH 11 and current density of 18.76 mA cm-2. Using NaCl as a supporting electrolyte, the degradation yield reached 99.98% after 60 min of photoelectrical treatment. Overall, the novel Fe3+-TiO2@CGS three-dimensional photoelectrical system looks very promising for the highly efficient catalytic degradation of organic contaminants.
Collapse
Affiliation(s)
- Jian Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China,School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yufei Wang
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China,School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Fanhui Guo
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China
| | - Juan Chen
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China,School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Jinxi Wang
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China,School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Xiaoyong Fan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Baoning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Qingbo Wei
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| | - Long Yan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China,*Correspondence: Long Yan, ; Jianjun Wu,
| | - Jianjun Wu
- School of Chemical Engineering and Technology, National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China,*Correspondence: Long Yan, ; Jianjun Wu,
| |
Collapse
|
2
|
Yu D, Pei Y, Ji Z, He X, Yao Z. A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology. CHEMOSPHERE 2022; 291:132895. [PMID: 34780739 DOI: 10.1016/j.chemosphere.2021.132895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
With the expansion of urbanisation, the total amount of solid waste produced by urban residents has been increasing, and the problem of municipal solid waste disposal has also been aggravated. Landfill leachate treatment technologies could be divided into three categories: biological, physical and advanced oxidation treatment technology. Among them, advanced oxidation treatment technology has a good effect on the treatment of landfill leachate with little secondary pollution and has excellent application potential. Three-dimensional (3D) electrode technology, as a new type of advanced oxidation technology, could remove refractory pollutants in water and has attracted considerable attention. This article aims to (1) compare existing landfill leachate treatment technologies, (2) summarise 3D electrode technology application scenarios, (3) discuss the advantages of 3D electrode technology in landfill leachate treatment and (4) look ahead the future directions of 3D electrode technology in landfill leachate treatment. We hope that this article will be helpful to researchers who are interested in the field of landfill leachate treatment.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zehua Ji
- School of Environment, Tsinghua University, Beijing, 100083, China
| | - Xudan He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
3
|
Idígoras J, Anta JA, Berger T. Charge Transfer Reductive in situ Doping of Mesoporous TiO 2 Photoelectrodes - Impact of Electrolyte Composition and Film Morphology. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:27882-27894. [PMID: 32903294 PMCID: PMC7116043 DOI: 10.1021/acs.jpcc.6b09926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Some material properties depend not only on synthesis and processing parameters, but may furthermore significantly change during operation. This is particularly true for high surface area materials. We used a combined electrochemical and spectroscopic approach to follow the changes of the photoelectrocatalytic activity and of the electronic semiconductor properties of mesoporous TiO2 films upon charge transfer reductive doping. Shallow donors (i.e. electron/proton pairs) were introduced into the semiconductor by the application of an external potential or, alternatively, by band gap excitation at open circuit conditions. In the latter case the effective open circuit doping potential depends critically on electrolyte composition (e.g. the presence of electron or hole acceptors). Transient charge accumulation (electrons and protons) in nanoparticle electrodes results in a photocurrent enhancement which is attributed to the deactivation of recombination centers. In nanotube electrodes the formation of a space charge layer results in an additional decrease of charge recombination at positive potentials. Doping is transient in nanoparticle films, but turns out to be stable for nanotube arrays.
Collapse
Affiliation(s)
- Jesús Idígoras
- Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain
| | - Juan A. Anta
- Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain
| | - Thomas Berger
- Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain
- Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstraße 34/III, A-5020 Salzburg, Austria
- Corresponding author:, Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstraße 34/III, A-5020 Salzburg, Austria, Phone: +43-662-8044-5931
| |
Collapse
|
4
|
Regonini D, Teloeken AC, Alves AK, Berutti FA, Gajda-Schrantz K, Bergmann CP, Graule T, Clemens F. Electrospun TiO(2) fiber composite photoelectrodes for water splitting. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11747-11755. [PMID: 24138632 DOI: 10.1021/am403437q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work has focused on the development of electrospun TiO2 fiber composite photoelectrodes for hydrogen production by water splitting. For comparison, similar photoelectrodes were also developed using commercial TiO2 (Aeroxide P25) nanoparticles (NPs). Dispersions of either fibers or P25 NPs were used to make homogenous TiO2 films on fluorine-doped SnO2 (FTO) glass substrates by a doctor blade (DB) technique. Scanning electron microscopy (SEM) analysis revealed a much lower packing density of the DB fibers, with respect to DB-P25 TiO2 NPs; this was also directly reflected by the higher photocurrent measured for the NPs when irradiating the photoelectrodes at a light intensity of 1.5AM (1 sun, 1000 W/m(2)). For a better comparison of fibers vs. NPs, composite photoelectrodes by dip-coating (onto FTO) TiO2 sol-gel (SG) matrixes containing an equal amount (5 or 20 wt %) of either fibers or P25 NPs were also investigated. It emerged that the photoactivity of the fibers was significantly higher. For composites containing 5 wt % TiO2 fibers, a photocurrent of 0.5 mA/cm(2) (at 0.23 V vs Ag/AgCl) was measured, whereas 5 wt % P25 NPs only provided 0.2 mA/cm(2). When increasing to 20 wt % fibers or NPs, the photocurrent decreased, because of the formation of microcracks in the photoelectrodes, because of the shrinkage of the sol-gel. The high photoactivity of the fiber-based electrodes could be confirmed by incident photon to current efficiency (IPCE) measurements. Remarkably, the IPCE of composites containing 5 wt % fibers was between 35% and 40% in the region of 380-320 nm, and when accounting for transmission/reflection losses, the absorbed photon to current efficiency (APCE) was consistently over 60% between 380 nm and 320 nm. The superior photoactivity is attributed to the enhanced electron transport in the electrospun fibers, with respect to P25 NPs. According to this study, it is clear that the electronic connectivity ensured by the sol-gel also contributes positively to the enhanced photocurrent.
Collapse
Affiliation(s)
- D Regonini
- Laboratory for High Performance Ceramics, EMPA-Swiss Federal Laboratories for Materials Science & Technology , Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
A photoelectrochemical study on the features of carbonate-catalyzed water oxidation at illuminated TiO2/Solution interface. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1854-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gómez R. The electrochemistry of nanostructured titanium dioxide electrodes. Chemphyschem 2012; 13:2824-75. [PMID: 22753152 DOI: 10.1002/cphc.201200073] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Indexed: 11/12/2022]
Abstract
Several of the multiple applications of titanium dioxide nanomaterials are directly related to the introduction or generation of charge carriers in the oxide. Thus, electrochemistry plays a central role in the understanding of the factors that must be controlled for the optimization of the material for each application. Herein, the main conceptual tools needed to address the study of the electrochemical properties of TiO(2) nanostructured electrodes are reviewed, as well as the electrochemical methods to prepare and modify them. Particular attention is paid to the dark electrochemical response of these nanomaterials and its direct connection with the TiO(2) electronic structure, interfacial area and grain boundary density. The physical bases for the generation of currents under illumination are also presented. Emphasis is placed on the fact that the kinetics of charge-carrier transfer to solution determines the sign and value of the photocurrent. Furthermore, methods for extracting kinetic information from open-circuit potential and photocurrent measurements are briefly presented. Some aspects of the combination of electrochemical and spectroscopic measurements are also dealt with. Finally, some of the applications of TiO(2) nanostructured samples derived from their electrochemical properties are concisely reviewed. Particular attention is paid to photocatalytic processes and, to a lesser extent, to photosynthetic reactions as well as to applications related to energy from the aspects of both saving (electrochromic layers) and accumulation (batteries). The use of TiO(2) nanomaterials in solar cells is not covered, as a number of reviews have been published addressing this issue.
Collapse
Affiliation(s)
- Thomas Berger
- Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, 03080 Alacant, Spain
| | | | | | | | | |
Collapse
|
7
|
Joshi PH, Korfiatis DP, Potamianou SF, Thoma KAT. Oxide thickness and roughness factor as parameters for TiO2-dye sensitized solar cells performance. RUSS J ELECTROCHEM+ 2011. [DOI: 10.1134/s102319351105003x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Pattarith K, Pungwiwat N, Laosooksathit S. Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2011. [DOI: 10.5012/jkcs.2011.55.2.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
|
10
|
Hartmann P, Lee DK, Smarsly BM, Janek J. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS NANO 2010; 4:3147-54. [PMID: 20486697 DOI: 10.1021/nn1004765] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper describes a systematic comparison of the photoelectrochemical properties of mesoporous TiO(2) films prepared by the two most prevalent templating methods: The use of preformed, crystalline nanoparticles is generally considered advantageous compared to the usage of molecular precursors such as TiCl(4), since the latter requires a separate heat treatment at elevated temperature to induce crystallization. However, our photoelectrochemical experiments clearly show that sol-gel derived mesoporous TiO(2) films cause an about 10 times higher efficiency for the water splitting reaction than their counterparts obtained from crystalline TiO(2) nanoparticles. This result indicates that for electrochemical applications the performance of nanoparticle-based metal oxide films might suffer from insufficient electronic connectivity.
Collapse
Affiliation(s)
- Pascal Hartmann
- Physikalisch-Chemisches Institut, Justus Liebig University, Giessen Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
11
|
Photoanodic oxidation of small organic molecules at nanostructured TiO2 anatase and rutile film electrodes. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Cui J, He W, Liu H, Liao S, Yue Y. Ordered hierarchical mesoporous anatase TiO2 from yeast biotemplates. Colloids Surf B Biointerfaces 2009; 74:274-8. [DOI: 10.1016/j.colsurfb.2009.07.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 11/26/2022]
|
13
|
Solarska R, Rutkowska I, Augustynski J. Unusual photoelectrochemical behaviour of nanocrystalline TiO2 films. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|