1
|
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts' Adhesion but Affected Their Behavior. J Funct Biomater 2023; 15:5. [PMID: 38276478 PMCID: PMC10817067 DOI: 10.3390/jfb15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts' ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants.
Collapse
Affiliation(s)
- Séverine Alfonsi
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Pithursan Karunathasan
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Ayann Mamodaly-Samdjee
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Keerthana Balathandayutham
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Sarah Lefevre
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| |
Collapse
|
2
|
Bouabdallaoui M, Aouzal Z, Ben Jadi S, Bazzaoui M, Wang R, Bazzaoui EA. Low potential electropolymerization and copolymerization of diphenylamine on aluminium. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci Rep 2022; 12:8689. [PMID: 35606404 PMCID: PMC9127107 DOI: 10.1038/s41598-022-12657-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Metallic zinc (Zn) anode has been received a great promise for aqueous rechargeable zinc-ion batteries (ZIBs) due to its intrinsic safety, low cost, and high volumetric capacity. However, the dendrite formation regarding the surface corrosion is the critical problems to achieve the high performance and the long lifespans of ZIBs. Here, we purpose the facile cyclic voltammetry deposition of polypyrrole/reduced graphene oxide (PPy/rGO) composites coated onto Zn 3D surface as Zn anode for ZIBs. As results, the deposited PPy/rGO layer demonstrates the homogeneous distribution covering onto Zn surface, effectively suppressing the formation of dendrite. Additionally, a symmetric cell of the PPy/rGO coated Zn remarkably enhances an electrochemical cycling with a low voltage hysteresis for zinc plating/stripping, which is superior to the pristine Zn cell. In addition, the deposited layer of PPy/rGO on Zn effectively improves the reactivity of electrochemically active surface area and the intrinsic electronic configurations, participating in extraction/intercalation of Zn2+ ions and leading to enhance ZIBs performance. The coin cell battery of Zn-PPy/rGO//MnO2 can deliver a high initial discharge capacity of 325 mAh/g at 0.5A/g with a good cycling stability up to 50% capacity retention after 300 cycles. Thus, these achieved results of Zn-PPy/rGO//MnO2 battery with dendrite-free feature effectively enhance the life-performance of ZIBs and open the way of the designed coating composite materials to suppress dendrite issues.
Collapse
|
4
|
Overoxidation of Intrinsically Conducting Polymers. Polymers (Basel) 2022; 14:polym14081584. [PMID: 35458334 PMCID: PMC9027932 DOI: 10.3390/polym14081584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers may undergo significant changes of molecular structure and material properties when exposed to highly oxidizing conditions or very positive electrode potentials, commonly called overoxidation. The type and extent of the changes depend on the experimental conditions and chemical environment. They may proceed already at much lower rates at lower electrode potentials because some of the processes associated with overoxidation are closely related to more or less reversible redox processes employed in electrochemical energy conversion and electrochromism. These changes may be welcome for some applications of these polymers in sensors, extraction, and surface functionalization, but in many cases, the change of properties affects the performance of the material negatively, contributing to material and device degradation. This report presents published examples, experimental observations, and their interpretations in terms of both structural and of material property changes. Options to limit and suppress overoxidation are presented, and useful applications are described extensively.
Collapse
|
5
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
6
|
New green advanced biopolymer as a repairer of aged AA-5083 alloy immersed into dead seawater. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Electrochemical polymerization of polypyrrole coatings on hard-anodized coatings of the aluminum alloy 2024-T3. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Design of Corrosion Protective and Antistatic Hybrid Sol-Gel Coatings on 6XXX AlMgSi Alloys for Aerospace Application. COATINGS 2020. [DOI: 10.3390/coatings10050441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An inorganic–organic coating based on glycidyl-functionalized silica and zirconia was synthesized by sol-gel technology to protect three types of AlMgSi (6XXX series) alloys against corrosion in aerospace applications. Different parameters such as the solid content, the organic/inorganic ratio of the sols and the deposition conditions were studied with the aim to achieve a tradeoff between the corrosion protection, antistatic performance and low vacuum-induced outgassing. Those parameters directly influence the thickness and the density of the coatings, and therefore the barrier effect against corrosion and the contact electrical resistance, which are affected in opposite ways. To obtain a low contact electrical resistance, silver nanowires (NW) with a high aspect ratio were loaded in the sol-gel matrix with the aim to create a conductive path through the hybrid coating with a low concentration of NWs. The coatings were adapted for AA6063, AA6061 and AA6082, and they all showed an outstanding anti-corrosion performance in different artificial weathering tests, whereas electrochemical impedance spectroscopy permitted the identification of the most critical parameters affecting water uptake. An antistatic performance was demonstrated by the low contact electrical resistance of the coated AA6061 and AA6063 alloys, although the incorporation of NWs showed a detrimental effect on the corrosion protection compared with the unloaded coating.
Collapse
|
9
|
Akdag A. Electrosynthesis of Poly(aniline‐co‐pyrrole‐co‐N‐methylpyrrole) Terpolymer and Poly(aniline‐co‐pyrrole‐co‐N‐methylpyrrole)‐TiO
2
Nanocomposite on Steel. ChemistrySelect 2020. [DOI: 10.1002/slct.202000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdurrahman Akdag
- Department of Medical Laboratory Techniques Vocational School of Health ServicesHarran University 63300 Sanliurfa Turkey
| |
Collapse
|
10
|
Korkut S, Göl S, Kilic MS. Poly(pyrrole‐
co
‐pyrrole‐2‐carboxylic acid)/Pyruvate Oxidase Based Biosensor for Phosphate: Determination of the Potential, and Application in Streams. ELECTROANAL 2020. [DOI: 10.1002/elan.201900517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyda Korkut
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Saliha Göl
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Muhammet Samet Kilic
- Department of Biomedical EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
11
|
Eslami M, Speranza G, Deflorian F, Zanella C. Polypyrrole coatings on rheocast aluminum‐silicon alloy: A correlation between properties and electrodeposition conditions. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maryam Eslami
- Department of Industrial EngineeringUniversity of Trento Trento Italy
| | - Giorgio Speranza
- Center for Materials and MicrosystemsFondazione Bruno Kessler (FBK) Trento Italy
| | - Flavio Deflorian
- Department of Industrial EngineeringUniversity of Trento Trento Italy
| | - Caterina Zanella
- Department of Materials and Manufacturing, School of EngineeringJönköping University Jönköping Sweden
| |
Collapse
|
12
|
Hakimi N, Zouaoui A, Satour FZ, Sahari A, Zegadi A. Electrochemical Synthesis and Properties of the Composite Material ITO/Polypyrrole-Benzoic: Cobalt for Electronic Storage Applications. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Chikouche I, Sahari A, Zouaoui A, Tingry S. Enhancement of electric properties of polypyrrole by copper electrodeposition. CAN J CHEM ENG 2015. [DOI: 10.1002/cjce.22197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imene Chikouche
- Laboratoire de Croissance et de Caractérisation de Nouveaux Semi-Conducteurs; Université de Sétif1; 19000 Algeria
| | - Ali Sahari
- Laboratoire de Croissance et de Caractérisation de Nouveaux Semi-Conducteurs; Université de Sétif1; 19000 Algeria
| | - Ahmed Zouaoui
- Laboratoire de Croissance et de Caractérisation de Nouveaux Semi-Conducteurs; Université de Sétif1; 19000 Algeria
| | - Sophie Tingry
- CR1 CNRS, Institut Européen des Membranes, CNRS UMR 5635 CC 047; Université Montpellier 2, Place Eugène Bataillon 34 095, MONTPELLIER CEDEX 5, France
| |
Collapse
|
14
|
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10:2341-53. [PMID: 24556448 DOI: 10.1016/j.actbio.2014.02.015] [Citation(s) in RCA: 871] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/03/2023]
Abstract
Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.
Collapse
|
15
|
Mindroiu M, Ion R, Pirvu C, Cimpean A. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3353-61. [DOI: 10.1016/j.msec.2013.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/03/2013] [Accepted: 04/07/2013] [Indexed: 12/18/2022]
|
16
|
The effect of dopant pKa and the solubility of corresponding acid on the electropolymerisation of pyrrole. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Et Taouil A, Mahmoud MM, Lallemand F, Lallemand S, Gigandet MP, Hihn JY. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel. ULTRASONICS SONOCHEMISTRY 2012; 19:1186-93. [PMID: 22516111 DOI: 10.1016/j.ultsonch.2012.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 05/22/2023]
Abstract
A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films.
Collapse
Affiliation(s)
- Abdeslam Et Taouil
- Institut UTINAM, UMR 6213 CNRS, Université de Franche-Comté, 30 Avenue de l'observatoire, 25009 Besançon Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Wang F, Liu J, Li Y, Wang Y. Novel composite nanofilm of electropolymerization and self-assembling on AA5052 surface as anticorrosion coating. J Appl Polym Sci 2011. [DOI: 10.1002/app.34893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Montoya P, Jaramillo F, Calderón J, Córdoba de Torresi S, Torresi R. Evidence of redox interactions between polypyrrole and Fe3O4 in polypyrrole–Fe3O4 composite films. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.09.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Martins N, Moura e Silva T, Montemor M, Fernandes J, Ferreira M. Polyaniline coatings on aluminium alloy 6061-T6: Electrosynthesis and characterization. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Correa-Borroel AL, Gutierrez S, Arce E, Cabrera-Sierra R, Herrasti P. Organosilanes and polypyrrole as anticorrosive treatment of aluminium 2024. J APPL ELECTROCHEM 2009. [DOI: 10.1007/s10800-009-9925-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Zhou DD, Cui XT, Hines A, Greenberg RJ. Conducting Polymers in Neural Stimulation Applications. IMPLANTABLE NEURAL PROSTHESES 2 2009. [DOI: 10.1007/978-0-387-98120-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|