1
|
Laroui A, Kwaczyński K, Dąbrzalska M, Glazer P, Poltorak L. Magnetic particles (Fe 3O 4) magnify ion transfer processes at the electrified liquid-liquid interface. Case study: Levamisole detection. Talanta 2024; 286:127439. [PMID: 39742846 DOI: 10.1016/j.talanta.2024.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
This article describes the effect of non-stabilized magnetic particles Fe3O4 (nanoparticles aggregates) addition to the aqueous phase of the polarized liquid-liquid interface (LLI) on the interfacial ion transfer processes. LLI was formed between 1,2-dichloroethane and water solutions (1,2 DCE)|water. The synthesis of Fe3O4 magnetic particles (MPs) was achieved by the co-precipitation method, after which their appearance, size of aggregates, and zeta potential were assessed. All electrochemical measurements reported in this study were performed using cyclic voltammetry (CV). We evaluated the effect of pH and the presence of different concentrations of magnetic Fe3O4 nanoparticles aggregates always initially added to the aqueous phase on tetramethylammonium cation (TMA+), and 4-octylbenzenesulfonic acid (OBS-) ion transfer. We have found that the addition of Fe3O4 MPs followed by their precipitation and LLI interface modification leads to pH dependent magnification of the recorded ionic currents attributed to the cation and anion transfer from the aqueous to the organic phase and vice versa. As such, we have plotted the calibration curves of TMA+ and OBS- in the concentration range of (10-200 μM) revealing that Fe3O4 MPs have a significant effect on detection sensitivity, which is dependent on the interaction between Fe3O4 MPs and the analyte being studied. Finally, we assessed the electrochemical behavior of levamisole at the 1,2-dichloroethane|water interface in the presence and absence of Fe3O4 MPs.
Collapse
Affiliation(s)
- Abdelatif Laroui
- University of Lodz, Doctoral School of Exact and Natural Science, Jana Matejki 21/23, 90-237 Lodz, Poland; University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Karolina Kwaczyński
- University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Monika Dąbrzalska
- University of Lodz, Department of General Biophysics, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Piotr Glazer
- Łukasiewicz Research Network - Poznań Institute of Technology, Chemical Technology and Environmental Protection Group, E. Estkowskiego 6, 61-755, Poznań, Poland
| | - Lukasz Poltorak
- University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
2
|
Edel JB, Ma Y, Kornyshev AA. Electrochemical photonics: a pathway towards electrovariable optical metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2717-2744. [PMID: 39635491 PMCID: PMC11501799 DOI: 10.1515/nanoph-2023-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 12/07/2024]
Abstract
This review article focuses on the latest achievements in the creation of a class of electrotuneable optical metamaterials for switchable mirrors/windows, variable colour mirrors, optical filters, and SERS sensors, based on the voltage-controlled self-assembly of plasmonic nanoparticles at liquid/liquid or solid/liquid electrochemical interfaces. Practically, these experimental systems were navigated by physical theory, the role of which was pivotal in defining the optimal conditions for their operation, but which itself was advanced in feedback with experiments. Progress and problems in the realisation of the demonstrated effects for building the corresponding devices are discussed. To put the main topic of the review in a wider perspective, the article also discusses a few other types of electrovariable metamaterials, as well as some of those that are controlled by chemistry.
Collapse
Affiliation(s)
- Joshua B. Edel
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| | - Ye Ma
- Department of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| |
Collapse
|
3
|
Khan MD, Warczak M, Shombe GB, Revaprasadu N, Opallo M. Molecular Precursor Routes for Ag-Based Metallic, Intermetallic, and Metal Sulfide Nanoparticles: Their Comparative ORR Activity Trend at Solid|Liquid and Liquid|Liquid Interfaces. Inorg Chem 2023; 62:8379-8388. [PMID: 37191662 DOI: 10.1021/acs.inorgchem.3c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (Ag3Sb), and binary or ternary metal sulfide (Ag2S and AgSbS2) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and Ag3Sb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic Ag3Sb.
Collapse
Affiliation(s)
- Malik Dilshad Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Magdalena Warczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Ginena Bildard Shombe
- Chemistry Department, University of Dar-es-Salaam, P.O. Box 35061, Dar-es-Salaam 63728, Tanzania
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
4
|
Gamero‐Quijano A, Manzanares JA, Ghazvini SMBH, Low PJ, Scanlon MD. Potential-Modulated Ion Distributions in the Back-to-Back Electrical Double Layers at a Polarised Liquid|Liquid Interface Regulate the Kinetics of Interfacial Electron Transfer. ChemElectroChem 2023; 10:e202201042. [PMID: 37082100 PMCID: PMC10108062 DOI: 10.1002/celc.202201042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Indexed: 12/29/2022]
Abstract
Biphasic interfacial electron transfer (IET) reactions at polarisable liquid|liquid (L|L) interfaces underpin new approaches to electrosynthesis, redox electrocatalysis, bioelectrochemistry and artificial photosynthesis. Herein, using cyclic and alternating current voltammetry, we demonstrate that under certain experimental conditions, the biphasic 2-electron O2 reduction reaction can proceed by single-step IET between a reductant in the organic phase, decamethylferrocene, and interfacial protons in the presence of O2. Using this biphasic system, we demonstrate that the applied interfacial Galvani potential differenceΔ o w φ provides no direct driving force to realise a thermodynamically uphill biphasic IET reaction in the mixed solvent region. We show that the onset potential for a biphasic single-step IET reaction does not correlate with the thermodynamically predicted standard Galvani IET potential and is instead closely correlated with the potential of zero charge at a polarised L|L interface. We outline that the appliedΔ o w φ required to modulate the interfacial ion distributions, and thus kinetics of IET, must be optimised to ensure that the aqueous and organic redox species are present in substantial concentrations at the L|L interface simultaneously in order to react.
Collapse
Affiliation(s)
- Alonso Gamero‐Quijano
- Department of Physical ChemistryUniversity of Alicante (UA)E-03080AlicanteSpain
- The Bernal Institute and Department of Chemical SciencesSchool of Natural SciencesUniversity of Limerick (UL)LimerickV94 T9PXIreland
| | - José A. Manzanares
- Department of ThermodynamicsFaculty of PhysicsUniversity of Valenciac/Dr. Moliner, 50BurjasotE-46100ValenciaSpain
| | - Seyed M. B. H. Ghazvini
- School of Molecular SciencesUniversity of Western Australia (UWA)35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Paul J. Low
- School of Molecular SciencesUniversity of Western Australia (UWA)35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Micheál D. Scanlon
- The Bernal Institute and Department of Chemical SciencesSchool of Natural SciencesUniversity of Limerick (UL)LimerickV94 T9PXIreland
| |
Collapse
|
5
|
Betancourt SNM, Riva JS. Opposite effects produced by Magnetic Nanoparticles:Phospholipid films generated at a liquid/liquid interface, in the drug transfer processes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Opallo MW, Dusilo K, Warczak M, Kalisz J. Hydrogen Evolution, Oxygen Evolution and Oxygen Reduction at Polarizable Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcin Wojciech Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences Department of Electrode Processes Kasprzaka 44/52 01-224 Warszawa POLAND
| | - Katarzyna Dusilo
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Magdalena Warczak
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Justyna Kalisz
- University of Warsaw: Uniwersytet Warszawski Chemistry POLAND
| |
Collapse
|
7
|
Moya Betancourt SN, Uranga JG, Juarez AV, Cámara CI, Pozo López G, Riva JS. Effect of bare and polymeric-modified magnetic nanoparticles on the drug ion transfer across liquid/liquid interfaces. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Moya Betancourt SN, Cámara CI, Juarez AV, Pozo López G, Riva JS. Effect of magnetic nanoparticles coating on their electrochemical behaviour at a polarized liquid/liquid interface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Al Nasser HA, Bissett MA, Dryfe RAW. The Modified Liquid‐Liquid Interface: The Effect of an Interfacial Layer of MoS
2
on Ion Transfer. ChemElectroChem 2021. [DOI: 10.1002/celc.202100820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussain A. Al Nasser
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Mark A. Bissett
- Department of Materials The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| |
Collapse
|
10
|
|
11
|
|
12
|
Gamero-Quijano A, Herzog G, Scanlon MD. Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
|
14
|
Zhang Y, Nishi N, Sakka T. Template-Free and Spontaneous Formation of Vertically Aligned Pd Nanofiber Arrays at the Liquid-Liquid Interface between Redox-Active Ionic Liquid and Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23731-23740. [PMID: 31180639 DOI: 10.1021/acsami.9b05255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vertically aligned Pd nanofiber arrays (NFAs) have been prepared at the liquid-liquid interface between redox-active ionic liquid (RAIL) and water (W) via a template-free manner. The RAIL with high hydrophobicity, (ferrocenylmethyl)dodecyldimethylammonium bis(nonafluorobutanesulfonyl)amide, plays dual roles of reducing agent for Pd precursor ions and the hydrophobic liquid phase simultaneously, and the RAIL|W interface has been utilized as the formation site for the spontaneous growth of Pd NFAs. The Pd NFAs consist of three parts: layers formed by partly connected particles on the top, NFAs in the middle, and firm sheetlike layers on the bottom. Because of the top and bottom supporting layers, the antideformation ability and durability of the Pd NFAs with a length reaching several micrometers are enhanced. A possible mechanism for the formation of the Pd NFAs has been discussed. The Pd NFAs show a good stability and a higher electrocatalytic activity toward the ethanol oxidation reaction than a commercial Pd/C catalyst. The present study provides a new strategy for the template-free and spontaneous formation of Pd NFAs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|
15
|
|
16
|
|
17
|
Zare Asadabadi A, Hoseini SJ, Bahrami M, Nabavizadeh SM. Catalytic applications of β-cyclodextrin/palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. NEW J CHEM 2019. [DOI: 10.1039/c8nj06449k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A supramolecular catalyst of Pd/β-cyclodextrin thin film is synthesized via a facile and one-pot procedure at an oil–water interface and applied for the reduction of toxic nitrophenol compounds and the degradation of harmful azo dyes.
Collapse
Affiliation(s)
- Azam Zare Asadabadi
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - S. Jafar Hoseini
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - Mehrangiz Bahrami
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - S. Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
| |
Collapse
|
18
|
Gamero-Quijano A, Molina-Osorio AF, Peljo P, Scanlon MD. Closed bipolar electrochemistry in a four-electrode configuration. Phys Chem Chem Phys 2019; 21:9627-9640. [DOI: 10.1039/c9cp00774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thermodynamic theory underpinning closed bipolar electrochemistry in a 4-electrode configuration is presented; a technique applicable to spectro-electroanalysis, energy storage, electrocatalysis and electrodeposition.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Pekka Peljo
- Research Group of Physical Electrochemistry and Electrochemical Physics
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| | - Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| |
Collapse
|
19
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
20
|
Stockmann TJ, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum Nanoparticle Impacts at a Liquid|Liquid Interface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. Jane Stockmann
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Léo Angelé
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Vitor Brasiliense
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| |
Collapse
|
21
|
Stockmann TJ, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum Nanoparticle Impacts at a Liquid|Liquid Interface. Angew Chem Int Ed Engl 2017; 56:13493-13497. [DOI: 10.1002/anie.201707589] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- T. Jane Stockmann
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Léo Angelé
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Vitor Brasiliense
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| |
Collapse
|
22
|
Scanlon MD, Peljo P, Rivier L, Vrubel H, Girault HH. Mediated water electrolysis in biphasic systems. Phys Chem Chem Phys 2017; 19:22700-22710. [PMID: 28820214 DOI: 10.1039/c7cp04601d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of efficient electrolysis by linking photoelectrochemical biphasic H2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp2*Fe(III)]+) to neutral decamethylferrocene (Cp2*Fe(II)) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp2*Fe(II) to form the corresponding hydride species, [Cp2*Fe(IV)(H)]+. Subsequently, [Cp2*Fe(IV)(H)]+ spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H2) and regenerate [Cp2*Fe(III)]+, whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp2*Fe(III)]+/Cp2*Fe(II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp2*Fe(III)]+ monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo2C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to ensure proton transfer from water to oil, and not anion transfer from oil to water, in order to maintain electroneutrality after electron transfer. The design, testing and successful optimisation of the operation of the biphasic electrolysis cell under dark conditions with Cp2*Fe(II) lays the foundation for the achievement of photo-induced biphasic water electrolysis at low overpotentials using another metallocene, decamethylrutheneocene (Cp2*Ru(II)). Critically, Cp2*Ru(II) may be recycled at a potential more positive than that of proton reduction in DCE.
Collapse
Affiliation(s)
- Micheál D Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.
| | - Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Lucie Rivier
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Heron Vrubel
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| |
Collapse
|
23
|
Peljo P, Scanlon MD, Olaya AJ, Rivier L, Smirnov E, Girault HH. Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports. J Phys Chem Lett 2017; 8:3564-3575. [PMID: 28707892 DOI: 10.1021/acs.jpclett.7b00685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
Collapse
Affiliation(s)
- Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Micheál D Scanlon
- Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL) , Limerick V94 T9PX, Ireland
| | - Astrid J Olaya
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Lucie Rivier
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
24
|
Abstract
Bipolar electrochemistry is receiving growing attention in the last years, not only because it is an important tool for studying electron transfer processes, but also because it is really fruitful in the development of new analytical sensors. Bipolar electrodes show promising applications as a direct analytical tool since oxidation and reduction reactions take place simultaneously on different parts of a single conductor. There are several electrochemical devices that provide information about electron transfer between two immiscible electrolyte solutions, but to the best of our knowledge, this is the first time that a bipolar device is able to record two spectroelectrochemical responses concomitantly at two different compartments. It allows deconvolving the electrochemical signal into two different optical signals related to the electron transfer processes occurring at two compartments that are electrically in contact. The combination of an electrochemical and two spectroscopic responses is indeed very useful, providing essential advantages in the study of a huge variety of systems. The study of three different electrochemical systems, such as reversible redox couples, carbon nanotubes, and conducting polymers has allowed us to validate the new cell and to demonstrate the capabilities of this technique to obtain valuable time-resolved information related to the electron transfer processes.
Collapse
Affiliation(s)
- David Ibañez
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
25
|
Rabiu AK, Toth PS, Rodgers ANJ, Dryfe RAW. Electrochemical Investigation of Adsorption of Single-Wall Carbon Nanotubes at a Liquid/Liquid Interface. ChemistryOpen 2017; 6:57-63. [PMID: 28168151 PMCID: PMC5288753 DOI: 10.1002/open.201600136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
There is much interest in understanding the interfacial properties of carbon nanotubes, particularly at water/oil interfaces. Here, the adsorption of single-wall carbon nanotubes (SWCNTs) at the water/1,2-dichloroethane (DCE) interface, and the subsequent investigation of the influence of the adsorbed nanotube layer on interfacial ion transfer, is studied by using the voltammetric transfer of tetramethylammonium (TMA+) and hexafluorophosphate (PF6-) as probe ions. The presence of the interfacial SWCNT layer significantly suppresses the transfer of both ions across the interface, with a greater degree of selectivity towards the PF6- ion. This effect was attributed both to the partial blocking of the interface by the SWCNTs and to the potential dependant adsorption of background electrolyte ions on the surface of the SWCNTs, as confirmed by X-ray photoelectron spectroscopy, which is caused by an electrostatic interaction between the interfacial SWCNTs and the transferring ion.
Collapse
Affiliation(s)
- Aminu K. Rabiu
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Peter S. Toth
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Robert A. W. Dryfe
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
26
|
Hoseini SJ, Aramesh N, Bahrami M. Effect of addition of iron on morphology and catalytic activity of PdCu nanoalloy thin film as catalyst in Sonogashira coupling reaction. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S. Jafar Hoseini
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Nahal Aramesh
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Mehrangiz Bahrami
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| |
Collapse
|
27
|
Smirnov E, Peljo P, Scanlon MD, Girault HH. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.10.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Xuan Y, Xie L, Huang X, Su B. Molecular electrocatalysis of oxygen reduction by iron(II) phthalocyanine at the liquid/liquid interface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Aslan E, Akin I, Patir IH. Enhanced Hydrogen Evolution Catalysis Based on Cu Nanoparticles Deposited on Carbon Nanotubes at the Liquid/Liquid Interface. ChemCatChem 2016. [DOI: 10.1002/cctc.201501119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emre Aslan
- Selcuk University; Department of Chemistry; 42031 Konya Turkey
| | - Ilker Akin
- Selcuk University; Department of Chemistry; 42031 Konya Turkey
| | | |
Collapse
|
30
|
Cámara C, Monzón L, Coey J, Yudi L. Assembly of magnetic nanoparticles at a liquid/liquid interface. Catalytic effect on ion transfer process. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Oxygen Reduction at the Liquid-Liquid Interface: Bipolar Electrochemistry through Adsorbed Graphene Layers. ChemElectroChem 2015. [DOI: 10.1002/celc.201500343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Hernández L, del Valle M, Díaz F, Fermin D, Risbridger T. Polymeric nanowires directly electrosynthesized on the working electrode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Aslan E, Patir IH, Ersoz M. Cu Nanoparticles Electrodeposited at Liquid-Liquid Interfaces: A Highly Efficient Catalyst for the Hydrogen Evolution Reaction. Chemistry 2015; 21:4585-9. [DOI: 10.1002/chem.201406615] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/10/2022]
|
34
|
Gründer Y, Ramasse QM, Dryfe RAW. A facile electrochemical route to the preparation of uniform and monoatomic copper shells for gold nanoparticles. Phys Chem Chem Phys 2015; 17:5565-8. [DOI: 10.1039/c4cp05804f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monoatomic copper shells are electrodeposited onto gold nanoparticles without the presence of a solid substrate.
Collapse
Affiliation(s)
- Y. Gründer
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - Q. M. Ramasse
- SuperSTEM Laboratory
- SciTech Daresbury Campus
- Daresbury WA4 4AD
- UK
| | - R. A. W. Dryfe
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
35
|
Rodgers AN, Booth SG, Dryfe RA. Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): A mini-review. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Effect of organic solvent on mutual diffusion and ionic behavior near liquid–liquid interface by molecular dynamics simulations. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|