1
|
Kutluk H, Bruch R, Urban GA, Dincer C. Impact of assay format on miRNA sensing: Electrochemical microfluidic biosensor for miRNA-197 detection. Biosens Bioelectron 2019; 148:111824. [PMID: 31698303 DOI: 10.1016/j.bios.2019.111824] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are important biomarkers for the early detection of various diseases, especially cancer. Therefore, there is a continuing interest in different biosensing strategies that allow for the point-of-care measurement of miRNAs. Almost all miRNA sensors utilize cross-hybridization of the target miRNA with a capture probe for the recognition, which can be designed in either a sandwich or a competitive format. In this work, we present a low-cost microfluidic biosensor platform for the electrochemical measurement of miRNA-197 (a tumor biomarker candidate) in undiluted human serum samples, operating with very low sample volumes (580 nl) and a sample-to-result time of one hour. For this purpose, different on-chip miRNA bioassays based on sandwich and competitive formats are developed and compared in terms of their sensitivity, dynamic range, selectivity, precision, and simplicity. The obtained results show that, despite having a narrower dynamic range when compared to the competitive format, the sandwich assay has superior performance regarding its sensitivity and selectivity. The lowest limit of detection which can be achieved with the sandwich assay is 1.28 nM (0.74 fmole), while 4.05 nM (2.35 fmole) with the competitive format. Moreover, the sandwich assay proves to have a better distinction against single-base mismatch oligonucleotide sequences compared to the competitive one. Due to its versatility and easy handling, overcoming the issue with the sensitivity, the implemented electrochemical microfluidic biosensor could pave the way for rapid and low-cost on-site miRNA diagnostics.
Collapse
Affiliation(s)
- Hazal Kutluk
- University of Freiburg, Department of Microsystems Engineering, Germany
| | - Richard Bruch
- University of Freiburg, Department of Microsystems Engineering, Germany; University of Freiburg Freiburg Center for Interactive Materials and Bioinspired Technologies, Germany
| | - Gerald A Urban
- University of Freiburg, Department of Microsystems Engineering, Germany; Freiburg Materials Research Center, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering, Germany; University of Freiburg Freiburg Center for Interactive Materials and Bioinspired Technologies, Germany.
| |
Collapse
|
2
|
MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. J Transl Med 2019; 99:452-469. [PMID: 30542067 DOI: 10.1038/s41374-018-0143-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The volume of point of care (POC) testing continues to grow steadily due to the increased availability of easy-to-use devices, thus making it possible to deliver less costly care closer to the patient site in a shorter time relative to the central laboratory services. A novel class of molecules called microRNAs have recently gained attention in healthcare management for their potential as biomarkers for human diseases. The increasing interest of miRNAs in clinical practice has led to an unmet need for assays that can rapidly and accurately measure miRNAs at the POC. However, the most widely used methods for analyzing miRNAs, including Northern blot-based platforms, in situ hybridization, reverse transcription qPCR, microarray, and next-generation sequencing, are still far from being used as ideal POC diagnostic tools, due to considerable time, expertize required for sample preparation, and in terms of miniaturizations making them suitable platforms for centralized labs. In this review, we highlight various existing and upcoming technologies for miRNA amplification and detection with a particular emphasis on the POC testing industries. The review summarizes different miRNA targets and signals amplification-based assays, from conventional methods to alternative technologies, such as isothermal amplification, paper-based, oligonucleotide-templated reaction, nanobead-based, electrochemical signaling- based, and microfluidic chip-based strategies. Based on critical analysis of these technologies, the possibilities and feasibilities for further development of POC testing for miRNA diagnostics are addressed and discussed.
Collapse
|
3
|
Target-induced diffusivity enhancement for rapid and highly sensitive homogeneous electrochemical detection of BLM in human serum. Talanta 2018; 190:492-497. [PMID: 30172539 DOI: 10.1016/j.talanta.2018.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 01/03/2023]
Abstract
A simple, rapid, and sensitive homogeneous electrochemical bleomycin (BLM) bioassay has been successfully developed through the target-induced specific/efficient cleavage reaction. The designed probe, denoted as MB-DNA, contains both methylene blue (MB) and target recognizable sequences, and presents relatively low electrochemical signal. Upon the addition of BLM, the recognition/cleavage reaction occurs and leads to the in-situ generation of MB tag (MB-DNA-1), leading to the reduced electrostatic repulsive force. As a result, an obvious enhancement in differential pulse voltammetry (DPV) current is determined, which is relied on the amount of BLM. Thus, a turn on homogeneous electrochemical method for BLM is really achieved, and exhibits high sensitivity of 33 pM, and the shortest response time of 20 min. Furthermore, this electrochemical bioassay presents excellent sensing performance in the analysis of BLM in real samples. Comparing with other sensing strategies for BLM, this proposed electrochemical platform is just consisted of one DNA probe alone, and affords a really rapid and sensitive strategy for BLM analysis.
Collapse
|
4
|
Ma Q, Gao Z. A simple and ultrasensitive fluorescence assay for single-nucleotide polymorphism. Anal Bioanal Chem 2018; 410:3093-3100. [PMID: 29644378 DOI: 10.1007/s00216-018-0874-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 11/30/2022]
Abstract
In this report, a simple, label-free and highly efficient nucleic acid amplification technique is developed for ultrasensitive detection of single-nucleotide polymorphism (SNP). Briefly, a designed padlock probe is first circularized by a DNA ligase when it perfectly complements to a mutant gene. Then, the mutant gene functions as a primer to initiate branched rolling circle amplification reaction (BRCA), generating a large number of branched DNA strands and a lot of pyrophosphate molecules which is equivalent to the number of nucleotides consumed. With the addition of a terpyridine-Zn(II) complex, pyrophosphate molecules can be sensitively detected owing to the formation of a fluorescent terpyridine-Zn(II)-pyrophosphate complex. The fluorescence intensity is directly associated with the content of the mutant gene in a sample solution. On the other hand, the circulation of the padlock probe is prohibited when it hybridizes with the wild-type gene. In this assay, the accumulative nature of the BRCA process produces a detection limit of 0.1 pM and an excellent selectivity factor of 1000 toward SNP. As little as 0.1% mutant in the wild-type gene can be successfully detected. The simple procedure, high sensitivity, and high selectivity of this assay offer a potentially viable alternative for routine SNP analysis. Graphical abstract A simple and label-free fluorescence assay for SNP detection by coupling BRCA with selective fluorescence detection of pyrophosphate using the terpyridine-Zn(II) complex.
Collapse
Affiliation(s)
- Qian Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 2017; 99:612-624. [PMID: 28837925 DOI: 10.1016/j.bios.2017.08.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis. Hence, it's necessary to fabricate accurate and sensitive biosensing platform for miRNAs detection. Up to now, researchers have developed many signal-amplification strategies for miRNAs detection, including hybridization chain reaction, nuclease amplification, rolling circle amplification, catalyzed hairpin assembly amplification and nanomaterials based amplification. These methods are typical, feasible and frequently used. In this review, we retrospect recent advances in signal amplification strategies for detecting miRNAs and point out the pros and cons of them. Furthermore, further prospects and promising developments of the signal-amplification strategies for detecting miRNAs are proposed.
Collapse
Affiliation(s)
- Ying-Xu Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Xin Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
6
|
Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2246-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Xiong H, Zheng X. Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2163-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, Condorelli G, Chitta R, D’Souza F, Kutner W, Palchetti I. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron 2017; 87:1012-1019. [DOI: 10.1016/j.bios.2016.09.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
|
9
|
Chang Z, Wang Y, Zheng X. Electrochemiluminescence (ECL) detection of MicroRNAs using polyethylenimine (PEI)/SiO 2 nanoparticles as the indicator. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Improving impedimetric nucleic acid detection by using enzyme-decorated liposomes and nanostructured screen-printed electrodes. Anal Bioanal Chem 2016; 408:7271-81. [DOI: 10.1007/s00216-016-9593-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 02/05/2023]
|
11
|
Campuzano S, Pedrero M, Pingarrón JM. Viral protein-based bioanalytical tools for small RNA biosensing. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 2016; 77:99-106. [DOI: 10.1016/j.bios.2015.09.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/29/2015] [Accepted: 09/10/2015] [Indexed: 11/20/2022]
|
13
|
Rafiee-Pour HA, Behpour M, Keshavarz M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 2016; 77:202-7. [DOI: 10.1016/j.bios.2015.09.025] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
|
14
|
Abstract
Advances and applications of synthetic genetic polymers (xeno-nucleic acids) are reviewed in this article. The types of synthetic genetic polymers are summarized. The basic properties of them are elaborated and their technical applications are presented. Challenges and prospects of synthetic genetic polymers are discussed.
Collapse
Affiliation(s)
- Qian Ma
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Danence Lee
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Yong Quan Tan
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Garrett Wong
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
15
|
Abstract
The use of cancer biomarkers is emerging as one of the most promising strategies for early detection and management of cancer. Biosensors can provide advanced platforms for biomarker analysis with the advantages of being easy to use, inexpensive, rapid and offering multi-analyte testing capability. The intention of this article is to discuss recent advances and trends in affinity biosensors for cancer diagnosis, prognosis and even theragnosis. The different types of affinity biosensors will be reviewed in terms of molecular recognition element. Current challenges and trends for this technology will be also discussed, with a particular emphasis on recent developments in miRNA detection.
Collapse
|
16
|
Shen W, Tian Y, Ran T, Gao Z. Genotyping and quantification techniques for single-nucleotide polymorphisms. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Deng H, Shen W, Gao Z. Colorimetric detection of single nucleotide polymorphisms in the presence of 10 3 - fold excess of a wild-type gene. Biosens Bioelectron 2015; 68:310-315. [DOI: 10.1016/j.bios.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
|
18
|
Wang M, Li B, Zhou Q, Yin H, Zhou Y, Ai S. Label-free, Ultrasensitive and Electrochemical Immunosensing Platform for microRNA Detection Using Anti-DNA:RNA Hybrid Antibody and Enzymatic Signal Amplification. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Li F, Peng J, Zheng Q, Guo X, Tang H, Yao S. Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24. Anal Chem 2015; 87:4806-13. [DOI: 10.1021/acs.analchem.5b00093] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fengye Li
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Jing Peng
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Qiong Zheng
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Xiang Guo
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Hao Tang
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Shouzhuo Yao
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
20
|
Ikbal J, Lim GS, Gao Z. The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta 2015; 853:30-45. [DOI: 10.1016/j.aca.2014.09.037] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
|
22
|
Torrente-Rodríguez RM, Campuzano S, López-Hernández E, Granados R, Sánchez-Puelles JM, Pingarrón JM. Direct Determination of miR-21 in Total RNA Extracted from Breast Cancer Samples Using Magnetosensing Platforms and the p19 Viral Protein as Detector Bioreceptor. ELECTROANAL 2014. [DOI: 10.1002/elan.201400317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 2014; 20:9476-92. [PMID: 24989446 DOI: 10.1002/chem.201402649] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and many pathological conditions, including cancer, are characterized by altered miRNA expression levels. Therefore, accurate and sensitive quantification of miRNAs may result in correct disease diagnosis establishing these small noncoding RNA transcripts as valuable biomarkers. Aiming at overcoming some limitations of conventional quantification strategies, nanotechnology is currently providing numerous significant alternatives to miRNA sensing. In this review an up-to-date account of nanotechnology-based strategies for miRNA detection and quantification is given. The topics covered are: nanoparticle-based approaches in solution, sensing based on nanostructured surfaces, combined nanoparticle/surface sensing approaches, and single-molecule approaches.
Collapse
Affiliation(s)
- Federica Degliangeli
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy)
| | | | | |
Collapse
|