1
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
2
|
Ma Y, Zhou X, Tang J, Liu X, Gan H, Yang J. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126032. [PMID: 33992020 DOI: 10.1016/j.jhazmat.2021.126032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, antibiotic bacteria residues (ABRs) is proposed as a novel green reducing agent and it is found that the reducing agent can realize the efficient recovery of the valuable metals in spent cathode powder (SCP), reduce the environmental pollution and realize the high-value utilization of the biomass waste. The leaching efficiency of Ni, Co, Mn and Li can reach 99.57%, 98.50%, 98.99% and 99.90% respectively under the optimal conditions of 3 mol L-1 H2SO4, mass ratio of ABRs to SCP of 0.8:1, liquid/solid ratio of 30:1 mL g-1, the temperature of 363 K and time of 2.5 h. Leaching kinetics results shows that the reaction process is controlled by the chemical reaction with apparent activation energy exceeding than 40 kJ/mol. More importantly, the detailed ABRs leaching mechanism is proposed that the metabolite of CaC2O4 and reducing sugar in ABRs provide a synergistic reduction effect on the recovery of valuable metals. Furthermore, acid leaching residue can be regenerated to obtain lithium-ion anode materials with excellent electrochemical properties. The entire process is a sustainable green recycling strategy by using waste ABRs waste to treat spent lithium-ion batteries (LIBs), recovering valuable metals efficiently and minimizing environmental pollution.
Collapse
Affiliation(s)
- Yayun Ma
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jingjing Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaojian Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongxiang Gan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha 410019, China
| | - Juan Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
4
|
Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Tajik S, Beitollahi H, Nejad FG, Zhang K, Le QV, Jang HW, Kim SY, Shokouhimehr M. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3364. [PMID: 32545829 PMCID: PMC7349560 DOI: 10.3390/s20123364] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
In recent years, several studies have focused on environmental pollutants. Bisphenol A (BPA) is one prominent industrial raw material, and its extensive utilization and release into the environment constitute an environmental hazard. BPA is considered as to be an endocrine disruptor which mimics hormones, and has a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to BPA. Experts in the field have published general electrochemical procedures for detecting BPA. The present timely review critically evaluates diverse chemically modified electrodes using various substances that have been reported in numerous studies in the recent decade for use in electrochemical sensors and biosensors to detect BPA. Additionally, the essential contributions of these substances for the design of electrochemical sensors are presented. It has been predicted that chemically modified electrode-based sensing systems will be possible options for the monitoring of detrimental pollutants.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Ho Won Jang
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-roSeongbuk-gu, Seoul 02841, Korea
| | - Mohammadreza Shokouhimehr
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
6
|
Ramsingh Girase T, Patil KJ, Kapdi AR, Gupta GR. Palladium Acetate/[CPy][Br]: An Efficient Catalytic System towards the Synthesis of Biologically Relevant Stilbene Derivatives via Heck Cross‐Coupling Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.201904837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Anant R. Kapdi
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh Marg Road Matunga Mumbai 400019
| | - Gaurav R. Gupta
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh Marg Road Matunga Mumbai 400019
| |
Collapse
|
7
|
Covalent functionalization of multi-walled carbon nanotubes with imidazolium-based poly(ionic liquid)s by Diels–Alder “click” reaction. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Advances in sensing and biosensing of bisphenols: A review. Anal Chim Acta 2017; 998:1-27. [PMID: 29153082 DOI: 10.1016/j.aca.2017.09.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs.
Collapse
|
9
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
ALTUNAY NAİL, YILDIRIM E, GÜRKAN R. Determination of bisphenol A in plastic bottle packaging beverage samples using ultrasonic-assisted extraction and flame atomic absorption spectrometry. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.288389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Li J, Wang Y, Sun Y, Ding C, Lin Y, Sun W, Luo C. A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine. RSC Adv 2017. [DOI: 10.1039/c6ra25627a] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and sensitive electrochemical sensor for detection of dopamine has been developed based on ionic liquid functionalized graphene oxide supported gold nanoparticles (GO-IL-AuNPs) coated onto a glassy carbon electrode.
Collapse
Affiliation(s)
- Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
12
|
Wang Y, Han M, Ye X, Wu K, Wu T, Li C. Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2005-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
|
14
|
Sensitive and Selective Determination of Riboflavin in Milk and Soymilk Powder by Multi-walled Carbon Nanotubes and Ionic Liquid [BMPi]PF6 Modified Electrode. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0598-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Li J, Wang X, Duan H, Wang Y, Luo C. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:391-398. [PMID: 27127069 DOI: 10.1016/j.msec.2016.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/07/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
A highly efficient and sensitive electrochemical sensor for EP based on reduced graphene and multi-walled carbon nanotube hybrid nanocomposites loaded TiO2-Au nano-clusters modified glassy carbon electrode was developed. The surface nature and morphology of the nanocomposite film and the electrochemical properties of the sensor were characterized by Raman spectra, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectra (EDX), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. Carbon nanomaterials were widely used in sensing due to its large electroactive surface area, fast electron transport and strong adsorption capacity. Meanwhile, TiO2-Au nano-clusters could accelerate the electron transfer, increase reactive site and extend electrochemical response window. The nanocomposite film could greatly enhance the response sensitivity and decrease the overpotential. The resulting sensor showed an excellent electrocatalytic activity toward EP. Under the optimum conditions (i.e. pH6.0, 0.1M PBS, preconcentration for 110s), Differential pulse voltammetry was employed to detect ultra-trace amounts of EP. The result of a wide linear range of 1.0-300nM and limited of detection 0.34nM (S/N=3) were obtained. The constructed sensor exhibited excellent accuracy and precision, the relative standard deviation (RSD) was less than 5%. The nanocomposite film sensor was successfully used to accurately detect the content of EP in practical samples, and the recoveries for the standards added are 97%-105%.
Collapse
Affiliation(s)
- Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huimin Duan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
16
|
Yaman YT, Abaci S. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode. SENSORS 2016; 16:s16060756. [PMID: 27231912 PMCID: PMC4934182 DOI: 10.3390/s16060756] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 12/04/2022]
Abstract
A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability.
Collapse
Affiliation(s)
- Yesim Tugce Yaman
- Department of Chemistry, Graduate School of Science and Engineering, Hacettepe University, Ankara 06800, Turkey.
| | - Serdar Abaci
- Department of Chemistry, Analytical Chemistry Division, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| |
Collapse
|
17
|
Wu Y, Chen X, Wang Y, Li C. Voltammetric determination of hexestrol based on the enhanced effect of a polymerized 3-decyl-1-(3-pyrrole-propyl)imidazolium tetrafluoroborate ionic liquid film electrode. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3-Decyl-1-(3-pyrrole-propyl)imidazolium tetrafluoroborate (DPIMBF4) ionic liquid was synthesized and characterized. DPIMBF4 ionic liquid not only possesses a pyrrole group that can be electrochemically polymerized onto a glassy carbon electrode surface by using a multipotential step technique, but it also contains a long carbon chain that can improve the stability of a polymerized ionic liquid film in an aqueous solution. X-ray photoelectron spectroscopy, scanning electron microscope, and electrochemical impedance spectroscopy were used to confirm the successful polymerization of the ionic liquid. Voltammetry was employed to investigate the electrochemical behaviors of an environmental estrogen, hexestrol, at the polymerized ionic liquid film electrode. Hexestrol presents an irreversible oxidation peak at the polymerized DPIMBF4 ionic liquid film electrode. Compared with the bare glassy carbon electrode, the oxidation peak of hexestrol increased significantly on the polymerized DPIMBF4 ionic liquid film electrode. The oxidation peak current was found to be linearly related to hexestrol concentration in the range of 5.0 × 10−9 to 1.0 × 10−5 mol L−1. The detection limit was calculated to be 1.25 × 10−9 mol L−1 (S/N = 3). Hexestrol in crucian meat was determined using the polymerized DPIMBF4 ionic liquid film electrode with good accuracy.
Collapse
Affiliation(s)
- Yingying Wu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xuemin Chen
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
18
|
da Silva CTP, Veregue FR, Aguiar LW, Meneguin JG, Moisés MP, Fávaro SL, Radovanovic E, Girotto EM, Rinaldi AW. AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. NEW J CHEM 2016. [DOI: 10.1039/c6nj00936k] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hybrid material on the carbon paste electrode exhibited a greater electroactivity for the determination of an endocrine disruptor.
Collapse
Affiliation(s)
| | - Fernanda Reis Veregue
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Laís Weber Aguiar
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Joziane Gimenes Meneguin
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Murilo Pereira Moisés
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Silvia Luciana Fávaro
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Eduardo Radovanovic
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Emerson Marcelo Girotto
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| | - Andrelson Wellington Rinaldi
- Materials Chemistry and Sensors Laboratory – LMSen
- Chemistry Department
- State University of Maringá – UEM
- Maringá
- Brazil
| |
Collapse
|
19
|
Wang Y, Han M, Liu G, Hou X, Huang Y, Wu K, Li C. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 2015; 74:792-8. [DOI: 10.1016/j.bios.2015.07.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/28/2022]
|
20
|
Zehani N, Fortgang P, Saddek Lachgar M, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron 2015; 74:830-5. [DOI: 10.1016/j.bios.2015.07.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/03/2023]
|
21
|
Li R, Wang Y, Deng Y, Liu G, Hou X, Huang Y, Li C. Enhanced Biosensing of Bisphenol A Using a Nanointerface Based on Tyrosinase/Reduced Graphene Oxides Functionalized with Ionic Liquid. ELECTROANAL 2015. [DOI: 10.1002/elan.201500448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Hou K, Huang L, Qi Y, Huang C, Pan H, Du M. A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:640-647. [DOI: 10.1016/j.msec.2015.01.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/02/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
23
|
Zhang X, Wu L, Zhou J, Zhang X, Chen J. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Jing P, Zhang X, Wu Z, Bao L, Xu Y, Liang C, Cao W. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta 2015; 141:41-6. [PMID: 25966378 DOI: 10.1016/j.talanta.2015.03.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Simple and low cost sensor for the determination of bisphenol A (BPA) based on graphene-1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) modified glassy carbon electrode was developed. It was an irreversible oxidation process of BPA on the modified electrode. Experimental conditions such as modified volume, pH, scan rate and accumulation time have been optimized. The modified electrode provided a considerable enhancement of BPA oxidation. The electrochemical response of BPA on this modified electrode was better than those on the graphene modified electrode and bare electrode. The detection limit of BPA was 8nM (S/N=3), the linear range was from 20nM to 2µM. The modified electrode has been employed for determination of milk and soda spiked BPA successfully.
Collapse
Affiliation(s)
- Ping Jing
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China.
| | - Xiaomei Zhang
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| | - Zhenxing Wu
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| | - Lei Bao
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| | - Yanli Xu
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| | - Chengzhu Liang
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| | - Wenqing Cao
- Technology Center of Shandong Entry-Exit Inspection & Quarantine Bureau, No. 70 Qutangxia Road, Qingdao, Shandong 266002, China
| |
Collapse
|
25
|
Yao M, Hu Z, Xu Z, Liu Y, Liu P, Zhang Q. Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Chen X, Ma Y, Chen D, Ma M, Li C. Electrochemical fabrication of polymerized imidazole-based ionic liquid bearing pyrrole moiety for sensitive determination of hexestrol in chicken meat. Food Chem 2015; 180:142-149. [PMID: 25766811 DOI: 10.1016/j.foodchem.2015.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/08/2015] [Accepted: 02/07/2015] [Indexed: 11/15/2022]
Abstract
1-[3-(tert-Butoxycarbonylamino)propyl]-3-[3-(N-pyrrole)propyl]imidazolium tetrafluoroborate [(t-Boc-APPPI)BF4], which is a novel pyrrolyl-functionalized ionic liquid, was synthesized and characterized. Subsequently, it was electrochemically deposited onto a glassy carbon electrode surface to fabricate a polymerized ionic liquid film electrode. X-ray photoelectron spectroscopy, scanning electron microscope and electrochemical impedance spectroscopy were used to confirm the successful polymerization of ionic liquid. Voltammetric behaviors of hexestrol at the film electrode were investigated. The oxidation peak slightly shifted towards positive potential, however, dramatically increased in peak current. Experimental conditions for hexestrol determination were optimized. The oxidation peak current is linear with hexestrol concentration in the range of 1.0 × 10(-8)-1.0 × 10(-5) mol L(-1). The detection limit is estimated to be 2.1 × 10(-9) mol L(-1) (S/N=3). Hexestrol in chicken meat was determined using the film electrode with good accuracy.
Collapse
Affiliation(s)
- Xuemin Chen
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanhui Ma
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Danchao Chen
- Ningbo Entry-Exit Inspection and Quarantine Bureau of P.R.C., Ningbo 315012, China
| | - Ming Ma
- Ningbo Entry-Exit Inspection and Quarantine Bureau of P.R.C., Ningbo 315012, China
| | - Chunya Li
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
27
|
A novel sensing platform based on ionic liquid integrated carboxylic-functionalized graphene oxide nanosheets for honokiol determination. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Liu J, Xu C, Liu C, Wang F, Liu H, Ji J, Li Z. Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Feng K, Park HW, Wang X, Lee DU, Chen Z. High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-Ion Batteries. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Vicentini FC, Elisa Ravanini A, Silva TA, Janegitz BC, Zucolotto V, Fatibello-Filho O. A novel architecture based upon multi-walled carbon nanotubes and ionic liquid to improve the electroanalytical detection of ciprofibrate. Analyst 2014; 139:3961-7. [DOI: 10.1039/c4an00861h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Dong Y, Zhao Y, Duan H, Liang Z. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1289-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Xiao-Hong Z, Lan-Hua L, Wei-Qi X, Bao-Dong S, Jian-Wu S, Miao H, Han-Chang S. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci Rep 2014; 4:4572. [PMID: 24699239 PMCID: PMC3975238 DOI: 10.1038/srep04572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L-9.60 μg/L with 50% inhibition concentration for BPA of 1.09 ± 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% ± 8.5% to 103.7% ± 3.5%, confirming its application potential in the measurement of BPA in reality.
Collapse
Affiliation(s)
- Zhou Xiao-Hong
- 1] State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China [2] Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, Nanjing, China
| | - Liu Lan-Hua
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Xu Wei-Qi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Song Bao-Dong
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Sheng Jian-Wu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - He Miao
- 1] State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China [2] Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, Nanjing, China
| | - Shi Han-Chang
- 1] State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China [2] Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, Nanjing, China
| |
Collapse
|
34
|
Ma M, Tu X, Zhan G, Li C, Zhang S. Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface. Mikrochim Acta 2014. [DOI: 10.1007/s00604-013-1151-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Yang S, Meng D, Sun J, Hou W, Ding Y, Jiang S, Huang Y, Huang Y, Geng J. Enhanced electrochemical response for mercury ion detection based on poly(3-hexylthiophene) hybridized with multi-walled carbon nanotubes. RSC Adv 2014. [DOI: 10.1039/c4ra02228a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
36
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|