1
|
El-Nasser AGA, Metwally MG, Shoukry AA, El Nashar RM. Application of recycled battery graphite decorated with poly hippuric acid/ multiwalled carbon nanotubes as an ecofriendly sensor for serotonin. Sci Rep 2024; 14:29304. [PMID: 39592745 PMCID: PMC11599384 DOI: 10.1038/s41598-024-80673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
A novel modified sensor based on electropolymerization of hippuric acid (HA) using cyclic voltammetry within the potential window - 1 to 1.5 V for 10 cycles at a scan rate 100 mV s-1 over multiwalled carbon nanotubes (MWCNTs) on battery graphite electrode (BGE). Poly (HA)/MWCNTs/BGE sensor exhibited two linearity ranges 3.00 × 10-3 to 1.00 µM (5.29 × 10-4 - 0.18 µg/ml) and 5.00 to 1.00 × 103 µM (0.88- 176.22 µg/ml) with limit of detection (LOD) of 0.06 × 10-2 µM (1.06 × 10-4 µg/ml) and limit of quantification (LOQ) of 2.00 × 10-3 µM (3.52 × 10-4 µg/ml). The poly (HA)/MWCNTs/BGE sensor was successfully applied to the determination of SER in the presence of tryptophan and in human blood serum with recovery ranges 98.31-105.47% with RSD values 3.02- 4.77%. Green chemistry metrics : national environmental index (NEMI), analytical greenness metric (AGREE), Raynie and Driver, green analytical procedure index (GAPI), and the analytical eco-scale were employed and indicated that the proposed sensor can be classified as an excellent green method, achieving an analytical eco-scale score of 84.
Collapse
Affiliation(s)
- Aya G Abd El-Nasser
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud G Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza A Shoukry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Hyder A, Ali A, Buledi JA, Memon R, Al-Anzi BS, Memon AA, Kazi M, Solangi AR, Yang J, Thebo KH. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Phys Chem Chem Phys 2024; 26:10940-10950. [PMID: 38526327 DOI: 10.1039/d4cp00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Bader S Al-Anzi
- Department of Environmental Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China.
| |
Collapse
|
3
|
Huang Z, Chen Z, Yan D, Jiang S, Nie L, Tu X, Jia X, Wågberg T, Chao L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules 2023; 28:8036. [PMID: 38138526 PMCID: PMC10745752 DOI: 10.3390/molecules28248036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.
Collapse
Affiliation(s)
- Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Zihan Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Dexuan Yan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Shuo Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Xinman Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
| | - Xueen Jia
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Thomas Wågberg
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| |
Collapse
|
4
|
Patyal M, Verma D, Kaur K, Gupta N, Malik AK. Development of a novel green catalyzed nanostructured Cu(II) macrocyclic complex-based disposable electrochemical sensor for sensitive detection of bisphenol A in environmental samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122420. [PMID: 37611790 DOI: 10.1016/j.envpol.2023.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
BPA is an endocrine disruptor and the leading environmental pollutant due to its use as raw material in industries. Therefore, the present work reports the sensitive, efficient, and disposable electrochemical paper-based SPE for determining the BPA sensor using an amide-based macrocyclic complex (nanostructured complex of copper acetate with macrocyclic ligand, i.e., CuL (CH3COO)2) synthesized using Citrus limon (lemon) extract via sonication for the first time. The structural, morphological, and electrochemical analyses have been characterized by mass spectroscopy, FTIR, UV-Vis, XRD, FESEM-EDX, elemental mapping and electrochemical techniques. The sensor platform for detecting BPA was fabricated by simple drop-casting on the disposable paper-based SPE using macrocyclic complex, i.e., CuL (CH3COO)2/SPE. After optimizing the conditions, CuL (CH3COO)2/SPE electrode was employed for determining BPA via CV with a wide linear range of 31 × 10-9 μM-0.205 μM, low LOD of 0.027 nM, and high sensitivity of 49.71 μA (log nM)-1 cm-2 having correlation coefficient (R2) of 0.976 which is quite better in compared to other reported SPE sensor for detection of BPA. Further, our sensor also showed good selectivity and reproducibility, in addition to detecting BPA in environmental samples (tube well water, river water and drain water) with acceptable recoveries and RSDs values. In this work, the combination of macrocyclic complex and paper-based SPE has turned out to be a cost-effective electrochemical sensor.
Collapse
Affiliation(s)
- Meenakshi Patyal
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Damini Verma
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Nidhi Gupta
- Department of Chemistry, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
5
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
6
|
Shokri F, Yari A, Jalalvand AR. Simultaneous estimation of rates of DNA damage induced by three important chemotherapy drugs by a novel electrochemical biosensor assisted by chemometric multivariate calibration methods. Int J Biol Macromol 2022; 219:650-662. [PMID: 35952814 DOI: 10.1016/j.ijbiomac.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
In this work, a novel electrochemical biosensor assisted by multivariate calibration methods was developed for simultaneous estimation of rates of DNA damage induced by doxorubicin (DX), daunorubicin (DR) and idarubicin (ID), and also to simultaneous determination of the drugs. A glassy carbon electrode was efficiently modified and used as the biosensing platform. Binding and interactions of DX, DR and ID with DNA were modeled by molecular docking methods, and theoretical information was completed by experimental results. The methylene blue was able to intercalate within the DNA structure and by incubation of the biosensor with DX or DR or ID, the methylene blue was replaced by drug and therefore, the voltammetric signal of the biosensor was changed due to the exposed DNA and repelling the electrochemical probe molecules carrying negative charge. The DNA damage induced by each drug was individually monitored by differential pulse voltammetry and then, rates of DNA damage were calibrated and validated by mixture design and multivariate calibration methods. The developed multivariate calibration model constructed based on vectorization of the data was able to simultaneous detection of the rates of DNA damage induced by all the three drugs. The change in the biosensor response in the presence of the drugs was also modeled by multivariate calibration methods to simultaneous determination of the drugs.
Collapse
Affiliation(s)
- Foroozan Shokri
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Abdollah Yari
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Faradilla P, Setiyanto H, Manurung RV, Saraswaty V. Electrochemical sensor based on screen printed carbon electrode-zinc oxide nano particles/molecularly imprinted-polymer (SPCE-ZnONPs/MIP) for detection of sodium dodecyl sulfate (SDS). RSC Adv 2021; 12:743-752. [PMID: 35425090 PMCID: PMC8978621 DOI: 10.1039/d1ra06862h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The foremost objective of this work is to prepare a novel electrochemical sensor-based screen-printed carbon electrode made of zinc oxide nanoparticles/molecularly imprinted polymer (SPCE-ZnONPs/MIP) and investigate its characteristics to detect sodium dodecyl sulfate (SDS). The MIP that is polyglutamic acid (PGA) film was synthesized via in situ electro-polymerization. The SDS's recognition site was left on the surface of the PGA film after extraction using the cyclic voltammetry (CV) technique, facilitating the specific detection of SDS. Moreover, the ZnONPs (∼71 nm, polydispersity index of 0.138) were synthesized and effectively combined with the MIP by a drop-casting method, enhancing the current response. The surface of the prepared SPCE-ZnONPs/MIP was characterized by scanning electron microscopy and energy dispersive X-ray. Besides, the electrochemical performance of the SPCE-ZnONPs/MIP was also studied through CV and differential pulse voltammetry (DPV) techniques. As an outstanding result, it is observed that the current response of SPCE-ZnONPs/MIP for detection of SDS remarkably increased almost four times higher from 0.009 mA to 0.041 mA in comparison with bare SPCE. More importantly, the proposed SPCE-ZnONPs/MIP exhibited an excellent selectivity (in the presence of interfering molecules of Ca2+, Pb2+, as well as sodium dodecylbenzene sulfonate (SDBS)), sensitivity, reproducibility, and repeatability. Since the modified sensor offers portability, it is suitable for in situ environment and cosmetic monitoring.
Collapse
Affiliation(s)
- Putri Faradilla
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia
| | - Henry Setiyanto
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia .,Center for Defence and Security Research, Institut Teknologi Bandung Bandung Indonesia
| | - Robeth Viktoria Manurung
- Research Centre for Electronics and Telecommunication, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| | - Vienna Saraswaty
- Research Unit for Clean Technology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| |
Collapse
|
8
|
Narouie S, Rounaghi GH, Saravani H, Shahbakhsh M. Multiwalled Carbon Nanotubes/4,4′‐dihydroxybiphenyl Nanolayered Composite for Voltammetric Detection of Phenol. ELECTROANAL 2021. [DOI: 10.1002/elan.202100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S. Narouie
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad P.O. Box 9177948974 Iran
| | - G. H. Rounaghi
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad P.O. Box 9177948974 Iran
| | - H. Saravani
- Inorganic Chemistry Research Laboratory, Department of Chemistry University of Sistan and Baluchestan Zahedan P.O. Box 98135-674 Iran
| | - M. Shahbakhsh
- Analytical Chemistry Research Laboratory, Department of Chemistry University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| |
Collapse
|
9
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Tsekeli TR, Tshwenya L, Sebokolodi TI, Ndlovu T, Arotiba OA. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre‐silver Nanoparticle Immobilisation Platform. ELECTROANAL 2021. [DOI: 10.1002/elan.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tebogo R. Tsekeli
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | | | - Thabile Ndlovu
- Department of Chemistry University of Eswatini Kwaluseni M201 Eswatini
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
11
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kurup CP, Mohd-Naim NF, Tlili C, Ahmed MU. A Highly Sensitive Label-free Aptasensor Based on Gold Nanourchins and Carbon Nanohorns for the Detection of Lipocalin-2 (LCN-2). ANAL SCI 2021; 37:825-831. [PMID: 33041307 DOI: 10.2116/analsci.20p303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A synergistic nanocomposite film composed of gold nanourchins (AuNU), oxidised carbon nanohorns (CNH), and chitosan functioned as an electrode modifier in the fabrication of the sensitive lipocalin-2 (LCN-2) aptasensor. The AuNUs/CNH/CS composite increased the surface area and thereby amplified the signal transduction. The amine-terminated LCN-2 aptamer was immobilised through the amide bond formed between the carboxyl group of polyglutamic acid (PGA) and the amine group of aptamer. Interaction of LCN-2 with the aptamer caused conformational changes in the structure of the aptamer. This generated higher conductivity, resulting in increased DPV peak current. The DPV signal increased with increasing concentration of LCN-2, and the change in signal was used for quantitative detection. The proposed aptasensor was able to detect LCN-2 in the linear range of 0.1 - 100.0 pg mL-1, with a low detection limit of 10 fg mL-1. The aptasensor showed high sensitivity, selectivity, reproducibility, and was able to detect LCN-2 in serum samples.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam
| | | | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam
| |
Collapse
|
13
|
Tsekeli T, Sebokolodi TI, Karimi-Maleh H, Arotiba OA. A Silver-Loaded Exfoliated Graphite Nanocomposite Anti-Fouling Electrochemical Sensor for Bisphenol A in Thermal Paper Samples. ACS OMEGA 2021; 6:9401-9409. [PMID: 33869920 PMCID: PMC8047760 DOI: 10.1021/acsomega.0c05836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Silver nanoparticles (AgNPs) were synthesized separately and loaded onto the expanded layers of exfoliated graphite (EG) to form a silver nanoparticle-exfoliated graphite nanocomposite (AgNPs-EG). The AgNPs-EG was compressed into a pellet (0.6 cm in diameter) and used to prepare an electrochemical sensor for bisphenol A (BPA) in standard samples and in thermal paper. The synthesized materials were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. The electrochemical behavior of BPA on the AgNPs-EG sensor was investigated by cyclic voltammetry and square wave voltammetry. Under optimized experimental conditions, the oxidation peak current was linearly proportional to bisphenol A concentrations in the range from 5.0 to100 μM, with a coefficient of determination (R2 ) of 0.9981. The obtained limit of detection of the method was 0.23 μM. The fabricated sensor was able to overcome electrode fouling with good reproducibility (RSD = 2.62%, n = 5) by mechanical polishing of the electrode on emery paper. The proposed method was successfully applied to determine bisphenol A in thermal paper samples and demonstrated good accuracy of 93.1 to 113% recovery.
Collapse
Affiliation(s)
- Tebogo
R. Tsekeli
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Tsholofelo I. Sebokolodi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Hassan Karimi-Maleh
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
14
|
A novel and disposable GP- based impedimetric biosensor using electropolymerization process with PGA for highly sensitive determination of leptin: Early diagnosis of childhood obesity. Talanta 2021; 225:121985. [PMID: 33592733 DOI: 10.1016/j.talanta.2020.121985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023]
Abstract
This study presents a novel, single-use electrochemical biosensor for the leptin biomarker, which may have potential use for early diagnosis of childhood obesity. The graphite paper working electrode was used for the first time in impedimetric biosensors. All immobilization procedure, investigation of the optimal parameters and characterization of biosensors were followed and evaluated using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV). The Scanning Electron Microscope (SEM) was utilized to visualize the morphology of the electrode surface during the immobilization steps of the immunosensor. Moreover, the characterization of the interactions between anti-leptin and leptin was investigated by using Single Frequency Technique (SFI). The applicability of the designed biosensor for real serum samples was tested for clinical use. It was observed that the biosensor allows high sensitivity in the analyte detection (leptin) in real serum samples. Moreover, it was suggested that the developed biosensor presents advantages such as long shelf life (5% loss of activity after 8 weeks and 60% loss after 10 weeks), ability to determine analyte concentrations at picogram level (0.2 pg mL-1 -20 pg mL-1), low limit of detection (0.00813 pg mL- 1), reproducibility, reusability (12 times) and high sensitivity.
Collapse
|
15
|
İncebay H, Saylakci R. Voltammetric Determination of Neotame by Using Chitosan/Nickelnanoparticles/Multi Walled Carbon Nanotubes Biocomposite as a Modifier. ELECTROANAL 2021. [DOI: 10.1002/elan.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hilal İncebay
- Nevsehir Hacı Bektas Veli University Faculty of Arts and Sciences Department of Molecular Biology and Genetics Nevsehir Turkey
| | - Rumeysa Saylakci
- Nevsehir Hacı Bektas Veli University Faculty of Arts and Sciences Department of Molecular Biology and Genetics Nevsehir Turkey
| |
Collapse
|
16
|
Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01511-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Tan X, Yang H, Ran X, Li Z, Zhang L, Gao W, Zhou X, Du G, Yang L. Pillar[6]arene-modified gold nanoparticles grafted on cellulose nanocrystals for the electrochemical detection of bisphenol A. NEW J CHEM 2021. [DOI: 10.1039/d1nj02040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The as-prepared CNCs@CP6-AuNP nanohybrid and its application in sensing BPA.
Collapse
Affiliation(s)
- Xiaoping Tan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Hongxing Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Xin Ran
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Zhi Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Lianpeng Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Wei Gao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Xiaojian Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Guanben Du
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Long Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| |
Collapse
|
18
|
Lien NT, Quoc Hung L, Hoang NT, Thu VT, Ngoc Nga DT, Hai Yen PT, Phong PH, Thu Ha VT. An Electrochemical Sensor Based on Gold Nanodendrite/Surfactant Modified Electrode for Bisphenol A Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:6693595. [PMID: 33457037 PMCID: PMC7785347 DOI: 10.1155/2020/6693595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
In the present work, we reported the simple way to fabricate an electrochemical sensing platform to detect Bisphenol A (BPA) using galvanostatic deposition of Au on a glassy carbon electrode covered by cetyltrimethylammonium bromide (CTAB). This material (CTAB) enhances the sensitivity of electrochemical sensors with respect to the detection of BPA. The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. The results displayed a low detection limit (22 nm) and a linear range from 0.025 to 10 µm along side with high reproducibility (RSD = 4.9% for seven independent sensors). Importantly, the prepared sensors were selective enough against interferences with other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting BPA in real plastic water drinking bottle samples with high accuracy (recovery range = 96.60%-102.82%) and it is in good agreement with fluorescence measurements.
Collapse
Affiliation(s)
- Nguyen Thi Lien
- Department of Chemistry, Hanoi University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Le Quoc Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tien Hoang
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dau Thi Ngoc Nga
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Hai Yen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Hong Phong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
19
|
GORDUK O. Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.728165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Li Z, Hu J, Xiao Y, Zha Q, Zeng L, Zhu M. Surfactant assisted Cr-metal organic framework for the detection of bisphenol A in dust from E-waste recycling area. Anal Chim Acta 2020; 1146:174-183. [PMID: 33461714 DOI: 10.1016/j.aca.2020.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Due to their highly porous structures, metal organic framework materials are widely used in analytic areas. In this paper, Cr-metal organic framework (MIL-101(Cr)) modified electrode was prepared and then was used as electrochemical sensor for the detection of bisphenol A (BPA). By using one kind of surfactant of cetyltrimethylammonium bromide (CTAB), the analytic performances of MIL-101 (Cr) towards BPA detection were greatly improved. Compared with pure MIL-101 (Cr), the differential pulse voltammetry (DPV) behavior of CTAB/MIL-101 (Cr) was improved 3.0 times in the presence of BPA. The hydrophobic long chain alkanes of CTAB can improve the enrichment and electrochemical oxidation for BPA. The CTAB/MIL-101 (Cr) sensor exhibited a linear range from 20 to 350 nM and a low detection limit of 9.95 nM (LOD = 3sb/S) and showed good reproducibility, stability and selectivity. Finally, real samples of dusts from E-waste recycling area in South China were collected and the CTAB/MIL-101 (Cr) sensor demonstrated satisfactory results for BPA detection from these dust samples.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Jiayue Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Yongguang Xiao
- Institute of Photonics Technology, Jinan University, Guangzhou, 511443, PR China
| | - Qingbing Zha
- Department of Fetal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, 510630, PR China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China.
| |
Collapse
|
21
|
Alam AU, Deen MJ. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal Chem 2020; 92:5532-5539. [DOI: 10.1021/acs.analchem.0c00402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arif U. Alam
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - M. Jamal Deen
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
22
|
Zhu X, Wu G, Xing Y, Wang C, Yuan X, Li B. Evaluation of single and combined toxicity of bisphenol A and its analogues using a highly-sensitive micro-biosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120908. [PMID: 31352154 DOI: 10.1016/j.jhazmat.2019.120908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol analogues have been developed as alternatives to bisphenol A (BPA), a common chemical with potential adverse effects on human health. It is imperative to perform a fast and sensitive evaluation for the toxicity of these bisphenol analogues. This study introduces a label-free electrochemical biosensor based on a screen-printed electrode modified with the carboxylated multi-walled carbon nanotube/rhodamine B/gold nanoparticle. Ctenopharyngodon idella kidney (CIK) cells were used as the biological recognition agent to detect changes in electrochemical signals and indicate the cell viability. Only 20 μL of sample was required for detection, which was much lower than that of other conventional electrochemical methods (≥ 1 mL). This biosensor was examined for the cytotoxicity of BPA, bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) to CIK cells. The half inhibition concentration (IC50) values after 48 h of exposure indicated that the rank order of cytotoxicities was BPAF > BPB > BPA > BPF > BPS. The morphological changes in CIK cells after treatment with various bisphenols were investigated, and the combined toxicities of the binary bisphenol mixtures were determined. Potentially synergistic and additive effects were observed. These findings provide new insights into the cytotoxicity of bisphenol analogues.
Collapse
Affiliation(s)
- Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Guanlan Wu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yi Xing
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Chengzhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Baikun Li
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
23
|
Li Y, Hua S, Zhou Y, Dang Y, Cui R, Fu Y. Activating ZnWO4 nanorods for efficient electroanalysis of bisphenol A via the strategy of In doping induced band gap change. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Hao C, Zhou Y, Dang Y, Chai S, Han G, Li Z, Zhang H, Zhang Y. The partial substitution of Cd by La ions in CdWO4 nanocrystal for the efficiently enhanced electrochemical sensing of BPA. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Kong D, Han L, Wang Z, Jiang L, Zhang Q, Wu Q, Su J, Lu C, Chen G. An electrochemical sensor based on poly(procaterol hydrochloride)/carboxyl multi-walled carbon nanotube for the determination of bromhexine hydrochloride. RSC Adv 2019; 9:11901-11911. [PMID: 35516997 PMCID: PMC9063560 DOI: 10.1039/c8ra08510b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Poly(procaterol hydrochloride) (p-ProH) polymeric film was successfully deposited onto the carboxyl multi-walled carbon nanotube (CMWCNT) modified glass carbon electrode (GCE) to construct a p-ProH/CMWCNT composite modified GCE. Due to the synergistic effect of p-ProH and CMWCNT in the composite, the developed sensor can enormously enhance the oxidation peak current of bromhexine hydrochloride (BrH) at ca. + 0.90 V. Based on this appearance, an electrochemical method was established for the sensitive and selective determination of BrH with differential pulse voltammetry (DPV). Various conditions affecting the peak current response of BrH were studied and optimized. Under the best conditions, the oxidation peak current of BrH is linear to its concentration in two linear dynamic ranges of 0.2–1.0 μmol L−1 (R = 0.9948) and 1.0–8.0 μmol L−1 (R = 0.9956), with a detection limit of 0.1 μmol L−1 (S/N = 3). Interference experiment indicated that the as-prepared electrochemical sensor showed wonderful selectivity to the recognition of BrH and was free from disturbance of many other electro-active substances such as dopamine, ascorbic and uric acid. Finally, the practicability of the BrH sensor was verified by the satisfactory results acquired from the BrH determination in pharmaceutical preparation and human serum. The fabrication process of the p-ProH/CMWCNT/GCE.![]()
Collapse
Affiliation(s)
- Dexian Kong
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Libin Han
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Zeming Wang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Lili Jiang
- College of Chemistry, Fuzhou University Fujian 350108 China
| | - Qian Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Qiong Wu
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Jinwei Su
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University Fujian 350108 China
| | - Guonan Chen
- College of Chemistry, Fuzhou University Fujian 350108 China
| |
Collapse
|
27
|
Yi W, He Z, Fei J, He X. Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC Adv 2019; 9:17325-17334. [PMID: 35519871 PMCID: PMC9064582 DOI: 10.1039/c9ra01891c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Heavy metal pollution can be toxic to humans and wildlife, thus it is of great significance to develop rapid and sensitive methods to detect heavy metal ions. Here, a novel type of electrochemical sensor for the simultaneous detection of heavy metal ions has been prepared by using poly(l-glutamic acid) (PGA) and graphene oxide (GO) composite materials to modify the glassy carbon electrode (GCE). Due to the good binding properties of poly(l-glutamic acid) (PGA) for the heavy metal ions (such as Cu2+, Cd2+, and Hg2+) as well as good electron conductivity of graphene oxide (GO), the heavy metal ions, Cu2+, Cd2+, and Hg2+ in aqueous solution can be accurately detected by using differential pulse anodic stripping voltammetry method (DPASV). Under the optimized experiment conditions, the modified GCE shows excellent electrochemical performance toward Cu2+, Cd2+, and Hg2+, and the linear range of PG/GCE for Cu2+, Cd2+, and Hg2+ is 0.25–5.5 μM, and the limits of detection (LODs, S/N ≥ 3) Cu2+, Cd2+, and Hg2+ are estimated to be 0.024 μM, 0.015 μM and 0.032 μM, respectively. Moreover, the modified GCE is successfully applied to the determination of Cu2+, Cd2+, and Hg2+ in real samples. All obtained results show that the modified electrode not only has the advantages of simple preparation, high sensitivity, and good stability, but also can be applied in the field of heavy metal ion detection. A novel electrochemical sensor with high stability and good reproducibility for the simultaneous detection of heavy metal ions was prepared by using PGA/GO to modify the GCE, showing high sensitivity of superior to most of the reported values.![]()
Collapse
Affiliation(s)
- Wei Yi
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Zihua He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
28
|
Beitollahi H, Mahmoudi Moghaddam H, Tajik S. Voltammetric Determination of Bisphenol A in Water and Juice Using a Lanthanum (III)-Doped Cobalt (II,III) Nanocube Modified Carbon Screen-Printed Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1545132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hadi Mahmoudi Moghaddam
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Tajik
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
29
|
Ulubay Karabiberoğlu Ş. Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide-Zinc Oxide Decorated on Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Fan Z, Fan L, Shuang S, Dong C. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO2 nanorod arrays. Talanta 2018; 189:16-23. [DOI: 10.1016/j.talanta.2018.06.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
|
31
|
An Electrochemiluminescence Sensor Based on Nafion/Magnetic Fe₃O₄ Nanocrystals Modified Electrode for the Determination of Bisphenol A in Environmental Water Samples. SENSORS 2018; 18:s18082537. [PMID: 30081469 PMCID: PMC6111305 DOI: 10.3390/s18082537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/16/2022]
Abstract
The well-dispersive and superparamagnetic Fe₃O₄-nanocrystals (Fe₃O₄-NCs) which could significantly enhance the anodic electrochemiluminescence (ECL) behavior of luminol, were synthesized in this study. Compared to ZnS, ZnSe, CdS and CdTe nanoparticles, the strongest anodic ECL signals were obtained at +1.6 V on the Fe₃O₄-NCs coated glassy carbon electrode. The ECL spectra revealed that the strong ECL resonance energy transfer occurred between luminol and Fe₃O₄-NCs. Furthermore, under the optimized ECL experimental conditions, such as the amount of Fe₃O₄-NCs, the concentration of luminol and the pH of supporting electrolyte, BPA exhibited a stronger distinct ECL quenching effect than its structural analogs and a highly selective and sensitive ECL sensor for the determination of bisphenol A (BPA) was developed based on the Fe₃O₄-NCs. A good linear relationship was found between the ECL intensity and the increased BPA concentration within 0.01⁻5.0 mg/L, with a correlation coefficient of 0.9972. The detection limit was 0.66 × 10-3 mg/L. Good recoveries between 96.0% and 105.0% with a relative standard deviation of less than 4.8% were obtained in real water samples. The proposed ECL sensor can be successfully employed to BPA detection in environmental aqueous samples.
Collapse
|
32
|
Liu Y, Zhang L, Zhao N, Han Y, Zhao F, Peng Z, Li Y. Preparation of molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for an ultrasensitive electrochemical sensor. Analyst 2018; 142:1091-1098. [PMID: 28272604 DOI: 10.1039/c7an00059f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly sensitive electrochemical sensor based on a carbon paste electrode (CPE) modified with molecularly imprinted polymeric microspheres (MIPMSs) was developed for the determination of bisphenol A (BPA). For the first time BPA-imprinted MIPMSs were prepared via distillation precipitation polymerization, and then the polymeric microspheres were involved in producing the MIPMS-modified CPE (MIPMS/CPE). The polymers obtained were observed via a scanning electron microscope and its dynamic and static adsorption performances were investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were performed to study the preparation process and electrochemical behavior of the modified carbon paste electrodes with [Fe(CN)6]3-/4- ions acting as electrical indicators. Compared with the bulk MIP packed sensor, the MIPMS/CPE exhibits a higher sensing response and better reproducibility. The detection linear range for BPA is 1 × 10-11-1 × 10-7 M with a detection limit of 2.8 × 10-12 M (S/N = 3) under the optimal experimental conditions. Moreover, the MIPMS/CPE exhibited good selectivity and stability. The developed sensor can determine BPA in real samples including soil, milk and water rapidly and accurately after simple sample pretreatment.
Collapse
Affiliation(s)
- Yuan Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Lu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yajie Han
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feilang Zhao
- Jiangsu Devote Instrumental Science & Technology Co., Ltd, Huai'an, Jiangsu 223001, China
| | - Zhengchun Peng
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. and Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| |
Collapse
|
33
|
Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Mikrochim Acta 2018; 185:265. [DOI: 10.1007/s00604-018-2810-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022]
|
34
|
A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry 2018; 120:183-189. [DOI: 10.1016/j.bioelechem.2017.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
|
35
|
Pei DN, Zhang AY, Pan XQ, Si Y, Yu HQ. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Anal Chem 2018; 90:3165-3173. [DOI: 10.1021/acs.analchem.7b04466] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Qiang Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
36
|
Dang Y, Cui R, Wang X, Zhou Y. The construction of an electrochemical sensing interface based on nano-CeO 2 cubes for highly sensitive detection of bisphenol A. NEW J CHEM 2018. [DOI: 10.1039/c8nj02501k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sensor for BPA was established based on the CeO2 nanocubes with abundant oxygen vacancies in lattice.
Collapse
Affiliation(s)
- Yuan Dang
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Rongrong Cui
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Xiaojiao Wang
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yuanzhen Zhou
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| |
Collapse
|
37
|
Benvidi A, Yazdanparast S, Rezaeinasab M, Tezerjani MD, Abbasi S. Designing and fabrication of a novel sensitive electrochemical aptasensor based on poly (L-glutamic acid)/MWCNTs modified glassy carbon electrode for determination of tetracycline. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Advances in sensing and biosensing of bisphenols: A review. Anal Chim Acta 2017; 998:1-27. [PMID: 29153082 DOI: 10.1016/j.aca.2017.09.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs.
Collapse
|
39
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Kong D, Jiang L, Liu Y, Wang Z, Han L, Lv R, Lin J, Lu CH, Chi Y, Chen G. Electrochemical investigation and determination of procaterol hydrochloride on poly(glutamic acid)/carboxyl functionalized multiwalled carbon nanotubes/polyvinyl alcohol modified glassy carbon electrode. Talanta 2017; 174:436-443. [PMID: 28738604 DOI: 10.1016/j.talanta.2017.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/17/2017] [Accepted: 06/18/2017] [Indexed: 10/19/2022]
Abstract
Poly(glutamic acid) (P-GLU)/carboxyl functionalized multiwalled carbon nanotubes (MWCNTs-COOH)/polyvinyl alcohol (PVA) modified glassy carbon electrode (GCE) has been successfully prepared and the electrochemical behavior of procaterol hydrochloride (ProH) was studied. The results show that the as-prepared modified electrode exhibits a good electrocatalytic property towards the oxidation of ProH in 0.2M phosphate buffer solution (PBS) (pH 6.0) due to the enhanced oxidation peak current at ~+0.59V. Under optimal reaction conditions, the oxidation peak current of ProH is proportional to its concentration in the linear dynamic ranges of 0.060 - 8.0μM (R = 0.9974), with a detection limit of 8.0 × 10-9M. Finally, this method was efficiently used for the determination of ProH in tablets and human urine with recoveries of 88.5~98.7% and 89.2 ~ 108.0%, respectively.
Collapse
Affiliation(s)
- Dexian Kong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Lili Jiang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yijun Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zeming Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Libin Han
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Rixin Lv
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiandi Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chun-Hua Lu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350116, China.
| | - Yuwu Chi
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Guonan Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350116, China
| |
Collapse
|
41
|
Wang W, Tang J, Zheng S, Ma X, Zhu J, Li F, Wang J. Electrochemical Determination of Bisphenol A at Multi-walled Carbon Nanotubes/Poly (Crystal Violet) Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0944-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Electroanalytical determination of Bisphenol A: Investigation of electrode surface fouling using various carbon materials. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Zeng Y, Zhu Z, Du D, Lin Y. Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Kannan PK, Hu C, Morgan H, Moshkalev SA, Rout CS. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode. NANOTECHNOLOGY 2016; 27:375504. [PMID: 27504686 DOI: 10.1088/0957-4484/27/37/375504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.
Collapse
|
45
|
Wannapob R, Thavarungkul P, Dawan S, Numnuam A, Limbut W, Kanatharana P. A Simple and Highly Stable Porous Gold-based Electrochemical Sensor for Bisphenol A Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rodtichoti Wannapob
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Physics, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Supaporn Dawan
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Applied Science, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
- Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| |
Collapse
|
46
|
Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61123-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:354-361. [DOI: 10.1016/j.msec.2016.03.093] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/19/2022]
|
48
|
Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1865-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Hu L, Fong CC, Zhang X, Chan LL, Lam PKS, Chu PK, Wong KY, Yang M. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4430-8. [PMID: 27002339 DOI: 10.1021/acs.est.5b05857] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).
Collapse
Affiliation(s)
- Liangsheng Hu
- Department of Biomedical Sciences, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
- Department of Applied Biology and Chemical Technology, and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | - Chi-Chun Fong
- Department of Biomedical Sciences, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
- Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong , Shenzhen 518057, People's Republic of China
- State Key Laboratory in Marine Pollution, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Xuming Zhang
- Department of Physics and Materials Science, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leo Lai Chan
- Department of Biomedical Sciences, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
- Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong , Shenzhen 518057, People's Republic of China
- State Key Laboratory in Marine Pollution, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
50
|
GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.174] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|