1
|
Liu H, Zhang D, Holmes SM, D'Agostino C, Li H. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chem Sci 2023; 14:9000-9009. [PMID: 37655027 PMCID: PMC10466308 DOI: 10.1039/d3sc01827j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood. Herein, we propose a new theoretical framework to uncover the ORR mechanism of ZrN by integrating surface state analysis, electric field effect simulations, and pH-dependent microkinetic modelling. The ZrN surface was found to be covered by ∼1 monolayer (ML) HO* under ORR operating conditions, which can accommodate the adsorbates in a bridge-site configuration for the ORR. Electric field effect simulations demonstrate that O* adsorption on a 1 ML HO* covered surface only induces a consistently small dipole moment change, resulting in a moderate bonding strength that can account for the superior activity. Based on the identified surface state of ZrN and electric field simulations, pH-dependent microkinetic modelling found that ZrN reaches the Sabatier optimum of the kinetic ORR volcano model in alkaline media, with the simulated polarization curves being in excellent agreement with the experimental data of ZrN and Pt/C. Finally, we show that this theoretical framework can lead to a good explanation for the alkaline oxygen electrocatalysis of other transition metal nitrites such as Fe3N, TiN, and HfN. In summary, this study proposes a new framework to rationalize and design transition metal nitrides for alkaline ORR.
Collapse
Affiliation(s)
- Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna Via Terracini, 28 40131 Bologna Italy
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
2
|
Liu Y, Mou X, Yu S, Zhang C, Chen J. Mechanisms of the Higher Catalytic Activity of Polymer Forms over Complexes for Non-pyrolytic Mono-1,10-phenanthroline-Coordinated Cu 2+ (Cu-N 2 Type) in an Oxygen Reduction Reaction. Inorg Chem 2023. [PMID: 37433112 DOI: 10.1021/acs.inorgchem.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In this paper, we have thoroughly investigated the ORR mechanism of non-pyrolytic mono-1,10-phenanthroline-coordinated Cu2+ (Cu-N2 type) complexes and polymers by molecular dynamics and quantum mechanics calculation. In contrast to the complex-catalyzed ORR, which follows a direct four-electron pathway along intermediates of Cu(I)-Phen, the polymer-catalyzed ORR follows an indirect four-electron pathway by intermediates of Cu(II)-Phen. By analyzing the structure, spin population, electrostatic potential (ESP), and density of states, we confirmed that the higher ORR catalytic activity of the polymer is due to the conjugation effect of coplanar phenanthroline and Cu(II) in the planar reactants or at the base of the square-pyramidal intermediates. The conjugation effect allows the highest ESP to be located near the active center Cu(II), while the lower ESPs are distributed on the phenanthroline, which is very favorable for the reduction current. This will serve as a theoretical foundation for the development of new highly efficient ORR non-pyrolytic CuN2 polymer catalysts.
Collapse
Affiliation(s)
- Yaoze Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xinxing Mou
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Shengping Yu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Investigation of synthesis parameters to fabricate CeO2 with a large surface and high oxygen vacancies for dramatically enhanced performance of direct DMC synthesis from CO2 and methanol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Theoretical insights into the oxygen reduction reaction on PtNi (111): Effects of acidic solvent and Pd-modification. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Tian D, Denny SR, Li K, Wang H, Kattel S, Chen JG. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem Soc Rev 2021; 50:12338-12376. [PMID: 34580693 DOI: 10.1039/d1cs00590a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal carbides and nitrides are interesting non-precious materials that have been shown to replace or reduce the loading of precious metals for catalyzing several important electrochemical reactions. The purpose of this review is to summarize density functional theory (DFT) studies, describe reaction pathways, identify activity and selectivity descriptors, and present a future outlook in designing carbide and nitride catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (N2RR), CO2 reduction reaction (CO2RR) and alcohol oxidation reactions. This topic is of high interest to scientific communities working in the field of electrocatalysis and this review should provide theoretical guidance for the rational design of improved carbide and nitride electrocatalysts.
Collapse
Affiliation(s)
- Dong Tian
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China. .,Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven R Denny
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Shyam Kattel
- Department of Physics, Florida A&M University, Tallahassee, FL, 32307, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
7
|
Theoretical study of the catalytic effect of TM-CmHm (TM = Cr, Mn, Sc, Ti, V, and m = 4, 5) on the activation of oxygen at the cathode and methane at the anode in the fuel cell reaction “CH4–O2”: a DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Elsayed AM, Rabia M, Shaban M, Aly AH, Ahmed AM. Preparation of hexagonal nanoporous Al 2O 3/TiO 2/TiN as a novel photodetector with high efficiency. Sci Rep 2021; 11:17572. [PMID: 34475431 PMCID: PMC8413375 DOI: 10.1038/s41598-021-96200-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The unique optical properties of metal nitrides enhance many photoelectrical applications. In this work, a novel photodetector based on TiO2/TiN nanotubes was deposited on a porous aluminum oxide template (PAOT) for light power intensity and wavelength detection. The PAOT was fabricated by the Ni-imprinting technique through a two-step anodization method. The TiO2/TiN layers were deposited by using atomic layer deposition and magnetron sputtering, respectively. The PAOT and PAOT/TiO2/TiN were characterized by several techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). The PAOT has high-ordered hexagonal nanopores with dimensions ~ 320 nm pore diameter and ~ 61 nm interpore distance. The bandgap of PAOT/TiO2 decreased from 3.1 to 2.2 eV with enhancing absorption of visible light after deposition of TiN on the PAOT/TiO2. The PAOT/TiO2/TiN as photodetector has a responsivity (R) and detectivity (D) of 450 mAW-1 and 8.0 × 1012 Jones, respectively. Moreover, the external quantum efficiency (EQE) was 9.64% at 62.5 mW.cm-2 and 400 nm. Hence, the fabricated photodetector (PD) has a very high photoelectrical response due to hot electrons from the TiN layer, which makes it very hopeful as a broadband photodetector.
Collapse
Affiliation(s)
- Asmaa M Elsayed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, Al Madinah Almonawara, 42351, Saudi Arabia
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| |
Collapse
|
9
|
Electrochemical, Tribological and Biocompatible Performance of Electron Beam Modified and Coated Ti6Al4V Alloy. Int J Mol Sci 2021; 22:ijms22126369. [PMID: 34198700 PMCID: PMC8232333 DOI: 10.3390/ijms22126369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Vacuum cathodic arc TiN coatings with overlaying TiO2 film were deposited on polished and surface roughened by electron beam modification (EBM) Ti6Al4V alloy. The substrate microtopography consisted of long grooves formed by the liner scan of the electron beam with appropriate frequencies (500 (AR500) and 850 (AR850) Hz). EBM transformed the α + β Ti6Al4V mixed structure into a single α'-martensite phase. Тhe gradient TiN/TiO2 films deposited on mechanically polished (AR) and EBM (AR500 and AR850) alloys share the same surface chemistry and composition (almost stoichiometric TiN, anatase and rutile in different ratios) but exhibit different topographies (Sa equal to approximately 0.62, 1.73, and 1.08 μm, respectively) over areas of 50 × 50 μm. Although the nanohardness of the coatings on AR500 and AR850 alloy (approximately 10.45 and 9.02 GPa, respectively) was lower than that measured on the film deposited on AR alloy (about 13.05 GPa), the hybrid surface treatment offered improvement in critical adhesive loads, coefficient of friction, and wear-resistance of the surface. In phosphate buffer saline, all coated samples showed low corrosion potentials and passivation current densities, confirming their good corrosion protection. The coated EBM samples cultured with human osteoblast-like MG63 cells demonstrated increased cell attachment, viability, and bone mineralization activity especially for the AR500-coated alloy, compared to uncoated polished alloy. The results underline the synergetic effect between the sub-micron structure and composition of TiN/TiO2 coating and microarchitecture obtained by EBM.
Collapse
|
10
|
Mohammadi-Rad N, Sardroodi JJ, Esrafili MD. Theoretical insights into oxygen reduction reaction catalyzed by phosphorus-doped divacancy C 3N nanosheet. J Mol Graph Model 2020; 100:107647. [PMID: 32663777 DOI: 10.1016/j.jmgm.2020.107647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
The catalytic reduction of O2 molecule into H2O is investigated over a P-doped divacancy C3N nanosheet (P-Dv-C3N) by using density functional theory calculations. A negative formation energy is calculated for P-Dv-C3N, suggesting that the introduction of a P atom into divacancy defective C3N would be thermodynamically favorable. The oxygen reduction reaction (ORR) over P-Dv-C3N would proceed via a 4e- pathway (O2 + 4H+ + 4e-→ 2H2O) at room temperature. The rate-determining step of the ORR on P-Dv-C3N is O + H+ + e- → OH which requires an activation energy of 1.21 eV. These results provide helpful insights into design novel metal-free catalysts to improve the kinetics of ORR in fuel cells.
Collapse
Affiliation(s)
- N Mohammadi-Rad
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - J J Sardroodi
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - M D Esrafili
- Department of Chemistry, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| |
Collapse
|
11
|
Mohammadi-rad N, Esrafili MD, Sardroodi JJ. CuN3 doped graphene as an active electrocatalyst for oxygen reduction reaction in fuel cells: A DFT study. J Mol Graph Model 2020; 96:107537. [DOI: 10.1016/j.jmgm.2020.107537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/01/2022]
|
12
|
Oxygen Reduction Reaction Catalyzed by Pt3M (M = 3d Transition Metals) Supported on O-doped Graphene. Catalysts 2020. [DOI: 10.3390/catal10020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pt3M (M = 3d transition metals) supported on oxygen-doped graphene as an electrocatalyst for oxygen reduction was investigated using the periodic density functional theory-based computational method. The results show that oxygen prefers to adsorb on supported Pt3M in a bridging di-oxygen configuration. Upon reduction, the O–O bond breaks spontaneously and the oxygen adatom next to the metal–graphene interface is hydrogenated, resulting in co-adsorbed O* and OH* species. Water formation was found to be the potential-limiting step on all catalysts. The activity for the oxygen reduction reaction was evaluated against the difference of the oxygen adsorption energy on the Pt site and the M site of Pt3M and the results indicate that the oxygen adsorption energy difference offers an improved prediction of the oxygen reduction activity on these catalysts. Based on the analysis, Pt3Ni supported on oxygen-doped graphene exhibits an enhanced catalytic performance for oxygen reduction over Pt4.
Collapse
|
13
|
Xi S, Lin G, Jin L, Li H, Xie K. Metallic porous nitride single crystals at two-centimeter scale delivering enhanced pseudocapacitance. Nat Commun 2019; 10:4727. [PMID: 31624255 PMCID: PMC6797774 DOI: 10.1038/s41467-019-12818-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudocapacitors that originate from chemisorption contain redox active sites mainly composed of transition metal ions with unsaturated coordination in lattice on the electrode surface. The capacitance is generally dictated by the synergy of the porous microstructure, electronic conduction and active sites in the porous electrode. Here we grow metallic porous nitride single crystals at 2-cm scale to enhance pseudocapacitance through the combination of large surface area with porous microstructure, high conductivity with metallic states and ordered active sites with unsaturated coordination at twisted surfaces. We show the enhanced gravimetric and areal pseudocapacitance and excellent cycling stability both in acidic and alkaline electrolyte with porous MoN, Ta5N6 and TiN single crystals. The long-range ordering of active metal-nitrogen sites account for the fast redox reactions in chemisorption while the high conductivity together with porous microstructure facilitate the charge transfer and species diffusion in electrodes.
Collapse
Affiliation(s)
- Shaobo Xi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Guoming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Lu Jin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Hao Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Kui Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Influence of Electron Beam Treatment of Co–Cr Alloy on the Growing Mechanism, Surface Topography, and Mechanical Properties of Deposited TiN/TiO2 Coatings. COATINGS 2019. [DOI: 10.3390/coatings9080513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examines the effect of electron beam treatment (EBT) of Co–Cr substrate on the film growth mechanism, mechanical properties, and surface topography of TiN/TiO2 coatings deposited by reactive magnetron sputtering. The obtained results and processes that occurred during the deposition are discussed in the context of crystallographic principles, and special attention is paid to the crystallographic orientation and growth mechanism studied by X-ray diffraction (XRD). The mechanical properties were investigated by means of nanoindentation and wear tests. The surface topography was evaluated using atomic force microscopy (AFM). The results obtained in the present study showed that polycrystalline TiN and anatase TiO2 phases were present in all cases. Electron beam treatment of Co–Cr substrate tended to form a reorientation of the microvolumes from (111) to (200) of TiN, leading to a change in the growth mechanism from three-dimensional (Volmer–Weber) to layer-by-layer (Frank–van der Merwe). It was found that the electron beam treatment process did not significantly affect the thickness of the coatings and the deposition rate. The treatment process led to an increase in surface roughness. The higher surface roughness after the EBT process should be appropriate to support cell growth and adhesion on the surface of the deposited bilayer coating. It was demonstrated that EBT of the substrate caused a decrease in hardness of the deposited coatings from 10 to 5 GPa. The observed decrease in hardness was attributed to the change in the preferred crystallographic orientation and film growth mechanism. The hardness of the bilayer coating after the application of EBT of the Co–Cr substrate was much closer to that of human bones, which means that severe stress shielding effect could not be expected. The evaluated coefficient of friction (COF) exhibited significantly lower values in the case of EBT of the substrate compared to the untreated Co–Cr material.
Collapse
|
15
|
Cui C, Luo Z, Yao J. Enhanced Catalysis of Pt3 Clusters Supported on Graphene for N–H Bond Dissociation. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report an in-depth study of catalytic N–H bond dissociation with typical platinum clusters on graphene supports. Among all the pristine graphene- and defective graphene-supported Pt clusters of different sizes that were studied, the Pt 3/G cluster possesses the highest reactivity and lowest activation barriers for each step of N–H dissociation in the decomposition of ammonia. In analyzing the reaction coordinates and projected density of states of the outermost orbitals, we found that the standing triangular Pt 3 on graphene creates prominent Lewis acid/base pair sites, which accommodate the adsorption and subsequent dissociation of *NH x . In comparison, Pt 1 lacks complementary active sites (CAS), causing it to be adverse to nucleophilic reactions, and in contrast, the Pt 13 cluster has weakened interactions and depleted charge density from the support, resulting in the elimination of the CAS effect. A stable pyramid-structured Pt 4 also develops Lewis acid/base sites, especially on defective graphene, but the density of states is still lower than the stand-up Pt 3/G. These findings strongly demonstrate the importance and necessity of cluster active sites for catalytic reactions of polar molecules, novel three-atoms metal cluster catalysis, and the selectivity and catalytic performance in the designing of ammonia fuel cells.
Collapse
|
16
|
Zhu H, Liu H, Yang L, Xiao B. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study. MATERIALS 2019; 12:ma12091560. [PMID: 31085995 PMCID: PMC6539511 DOI: 10.3390/ma12091560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Abstract
Developing the optimized electrocatalysts with high Pt utilization as well as the outstanding performance for the oxygen reduction reaction (ORR) has raised great attention. Herein, the effects of the interlayer ZrC, HfC, or TiN and the multilayer Pt shell on the adsorption ability and the catalytic activity of the TiC@Pt core-shell structures are systemically investigated by density functional theory (DFT) calculations. For the sandwich structures, the presence of TiN significantly enhances the adsorption ability of the Pt shell, leading to the deterioration of the activity whilst the negligible influence of the ZrC and HfC insertion results the comparable performance with respect to TiC@Pt1ML. In addition, increasing the thickness of the Pt shell reduces the oxyphilic capacity and then mitigates the OH poisoning. From the free energy plots, the superior activity of TiC@Pt2ML is identified in comparison with 1ML and 3ML Pt shell. Herein, the improved activity with its high Pt atomic utilization makes the potential TiC@Pt2ML electrocatalyst for the future fuel cells.
Collapse
Affiliation(s)
- Hui Zhu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Houyi Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Lei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
17
|
Zhang Y, Huang N, Zhou F, He Q, Zhan S. Research on the oxygen reduction reaction (ORR) mechanism of g‐C
3
N
4
doped by Ag based on first‐principles calculations. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanyuan Zhang
- Department of Materials Science and EngineeringDalian Maritime University Dalian P. R. China
| | - Naibao Huang
- Department of Materials Science and EngineeringDalian Maritime University Dalian P. R. China
| | - Feng Zhou
- Department of Materials Science and EngineeringDalian Maritime University Dalian P. R. China
| | - Qiuchen He
- Department of Materials Science and EngineeringDalian Maritime University Dalian P. R. China
| | - Su Zhan
- Department of Materials Science and EngineeringDalian Maritime University Dalian P. R. China
| |
Collapse
|
18
|
Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem Rev 2018; 118:2302-2312. [DOI: 10.1021/acs.chemrev.7b00488] [Citation(s) in RCA: 1065] [Impact Index Per Article: 152.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Liu HH, Hsueh KL, Hong CW. DFT analysis on the Pt with nano-carbon frames for low temperature fuel cell applications. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kwon JA, Kim MS, Shin DY, Kim JY, Lim DH. First-principles understanding of durable titanium nitride (TiN) electrocatalyst supports. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Luo J, Tian X, Zeng J, Li Y, Song H, Liao S. Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01618] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junming Luo
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Xinlong Tian
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Jianhuang Zeng
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Yingwei Li
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Huiyu Song
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| |
Collapse
|
22
|
Electrochemical and physicochemical properties of titanium Oxy-nitride electrocatalyst prepared by sol-gel methods for the oxygen reduction reaction purposes. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2930-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Seifitokaldani A, Savadogo O. Electrochemically Stable Titanium Oxy-Nitride Support for Platinum Electro-Catalyst for PEM Fuel Cell Applications. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|