1
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
2
|
Xie S, Liang S, Tian L, Ding G, He M, Li H, Yang H. Electrochemical aptasensor based on DNA-templated copper nanoparticles and RecJf exonuclease-assisted target recycling for lipopolysaccharide detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:396-402. [PMID: 38131415 DOI: 10.1039/d3ay01638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An electrochemical aptasensor for detecting lipopolysaccharides (LPS) was fabricated based on DNA-templated copper nanoparticles (DNA-CuNPs) and RecJf exonuclease-assisted target recycling. The DNA-CuNPs were synthesized on a double-stranded DNA template generated through the hybridization of the LPS aptamer and its complementary chain (cDNA). In the absence of LPS, the CuNPs were synthesized on DNA double-strands, and a strong readout corresponding to the CuNPs was achieved at 0.10 V (vs. SCE). In the presence of LPS, the fabricated aptamer could detach from the DNA double-strand to form a complex with LPS, disrupting the template for the synthesis of CuNPs on the electrode. Meanwhile, RecJf exonuclease could hydrolyze the cDNA together with this single-stranded aptamer, releasing the LPS for the next round of aptamer binding, thereby enabling target recycling amplification. As a result, the electrochemical signal decreased and could be used to indicate the LPS content. The fabricated electrochemical aptasensor exhibited an extensive dynamic working range of 0.01 pg mL-1 to 100 ng mL-1, and its detection limit was 6.8 fg mL-1. The aptasensor also exhibited high selectivity and excellent reproducibility. Moreover, the proposed aptasensor could be used in practical applications for the detection of LPS in human serum samples.
Collapse
Affiliation(s)
- Shunbi Xie
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| | - Shuting Liang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| | - Liangliang Tian
- School of Electronic Information and Electrical Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China
| | - Ge Ding
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| | - Meiting He
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| | - Haojie Li
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| | - Heshan Yang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry & Environmental Engineering (Chongqing University of Arts and Sciences), Chongqing 402160, P. R. China.
| |
Collapse
|
3
|
Shao B, Chen F, Wang J, Zhai W. Cavitation Regulated Sonochemical Synthesis of Flexible Self-Supported CuO@PDA/CC Electrode for Highly Sensitive Glucose Sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Kong X, Shen Q, Wan T, Li K, Sun F, Wu H. Two silver(I) complexes: Synthesis, structures, and electrochemical
H
2
O
2
sensing. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoxia Kong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Qinqin Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Fugang Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University Lanzhou People's Republic of China
| |
Collapse
|
5
|
Sun F, Dong J, Li R, Jiang Y, Wan T, Wu H. Two binuclear silver(I) complexes containing V‐shaped bis (benzimidazole) ligands: Syntheses, structures and electrochemical sensing towards hydrogen peroxide. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fugang Sun
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| |
Collapse
|
6
|
Liu L, Wang L, Liang Q, Guo T, Guo F. Hydrogen peroxide residue determination in food samples by a glassy carbon electrode modified with CuO-SWCNT-PDDA nanocomposites. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Emir G, Karakaya S, Dilgin Y. Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01036-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Doğan HÖ, Çepni E, Urhan BK, Eryiğit M. Non‐Enzymatic Amperometric Detection of H
2
O
2
on One‐Step Electrochemical Fabricated Cu
2
O/Electrochemically Reduced Graphene Oxide Nanocomposite. ChemistrySelect 2019. [DOI: 10.1002/slct.201901588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hülya Ö. Doğan
- Department of Chemistry and Chemical Processing TechnologiesErzurum Vocational CollegeAtatürk University, Erzurum Turkey 25240
- Department of Nanoscience and NanoengineeringNanomaterials SciencesAtatürk University, Erzurum Turkey 25240
| | - Emir Çepni
- Department of Nanoscience and NanoengineeringNanomaterials SciencesAtatürk University, Erzurum Turkey 25240
| | - Bingül K. Urhan
- Department of Nanoscience and NanoengineeringNanomaterials SciencesAtatürk University, Erzurum Turkey 25240
| | - Mesut Eryiğit
- Department of Nanoscience and NanoengineeringNanomaterials SciencesAtatürk University, Erzurum Turkey 25240
| |
Collapse
|
10
|
Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: A versatile electrode material for stable supercapacitor and sensing applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens Bioelectron 2018; 121:125-136. [PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
Collapse
Affiliation(s)
- Samiul Alim
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Jaya Vejayan
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - A K M Kafi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia.
| |
Collapse
|
12
|
Yuan PX, Deng SY, Zheng CY, Cosnier S, Shan D. In situ formed copper nanoparticles templated by TdT-mediated DNA for enhanced SPR sensor-based DNA assay. Biosens Bioelectron 2017; 97:1-7. [PMID: 28544921 DOI: 10.1016/j.bios.2017.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
For the efficient surface plasmon resonance (SPR)-based DNA assay researching, signal amplification tactics were absolutely necessary. In this work, a sensitive SPR-DNA sensor was developed by employing in situ synthesis of copper nanoparticles (CuNPs) templated by poly-T sequences DNA from terminal deoxynucleotidyl transferase (TdT)-mediated extension, and synergistically with nano-effect deposition as the mass relay. The objective of this strategy was manifold: firstly, tDNA hybridized with the optimal designed probes to active the TdT-mediated DNA extension onto the surface of SPR chip, resulted a long poly-T sequences ssDNA chain in dsDNA terminal onto surface of gold chip and characterized by SPR signal amplitudes. Secondly, copper ion (Cu2+) adsorbed into the skeleton of poly-T sequences DNA, with the aid of ascorbic acid (VC) to achieve the Cu2+ reduction, copper nanostructures (CuNPs) was synchronously generated onto the single nucleotide chain anchoring in dsDNA derivatives and the formation was featured by transmission electron micrographs (TEM) and electrochemistry. Lastly, dsDNA-complexed CuNPs (CuNPs@dsDNA) triggered the final signal amplification via real-time conversion of the additive catechol violet (CV) into oligomer or chelation precipitation by CuNPs-tagged reporters. With the proposed setups, a precise and replicable DNA sensing platform for specific target oligo was obtained with a detection limit down to 3.21 femtomolar, demonstrating a beneficial overlapping exploitation of nanomaterials and biochemical reaction as unique SPR infrastructure. Such triple-amplification strategic setups, the possibility of various methods abutment and biocompatibility weight reactor was amassed and adapted to more biological detection field.
Collapse
Affiliation(s)
- Pei-Xin Yuan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sheng-Yuan Deng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chen-Yu Zheng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Barathi P, Thirumalraj B, Chen SM, Subramania A. One-pot electrochemical preparation of copper species immobilized poly(o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H2O2 sensor. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox activity of copper species immobilized poly(o-aminophenol)/multi-walled carbon nanotube for direct electrocatalysis towards detection of H2O2.
Collapse
Affiliation(s)
- Palani Barathi
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - A. Subramania
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| |
Collapse
|
14
|
Jaikaew W, Patanakul R, Schulte A. Electrical Cable-based Copper Disk Electrodes as Oxidase Biosensor Platforms with Cathodic H2
O2
Readout. ELECTROANAL 2016. [DOI: 10.1002/elan.201600250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wajee Jaikaew
- School of Chemistry, Institute of Science; Suranaree University of Technology; Nakhon Ratchasima Thailand
- Biochemistry and Electrochemistry Research Unit; Suranaree University of Technology; Nakhon Ratchasima Thailand
| | | | - Albert Schulte
- School of Chemistry, Institute of Science; Suranaree University of Technology; Nakhon Ratchasima Thailand
- Biochemistry and Electrochemistry Research Unit; Suranaree University of Technology; Nakhon Ratchasima Thailand
- Centre of Excellence in Advanced Functional Materials; Suranaree University of Technology; Nakhon Ratchasima Thailand
| |
Collapse
|
15
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
16
|
Mao X, Tian W, Hatton TA, Rutledge GC. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications. Anal Bioanal Chem 2015; 408:1307-26. [DOI: 10.1007/s00216-015-9209-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023]
|
17
|
Ferricyanide confined into the integrative system of pyrrolic surfactant and SWCNTs: The enhanced electrochemial sensing of paracetamol. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Roushani M, Dizajdizi BZ. Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|