1
|
Chang J, Defeo JN, Wei Z, Dikarev EV. Two polymorph modifications of tris(hexafluoroacetylacetonato)iron(III) revealed: is that common for other trivalent metals? Acta Crystallogr C Struct Chem 2024; 80:567-575. [PMID: 39158992 DOI: 10.1107/s2053229624007575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
A long-standing issue about the correct identification of an important starting reagent, iron(III) hexafluoroacetylacetonate, Fe(hfac)3 (1), has been resolved. The tris-chelated mononuclear complex was found to crystallize in two polymorph modifications which can be assigned as the low-temperature (1-L) monoclinic P21/n and the high-temperature (1-H) trigonal P-3. Low-temperature polymorph 1-L was found to transform to 1-H upon sublimation at 44 °C. Two modifications are clearly distinguished by powder X-ray diffraction (PXRD), single-crystal X-ray diffraction, differential scanning calorimetry (DSC), and melting-point measurements. On the other hand, the two forms share similar characteristics in direct analysis in real-time mass spectrometry (DART-MS), attenuated total reflection (ATR) spectroscopy, and some physical properties, such as color, volatility, sensitivity, and solubility. Analysis of the literature and some of our preliminary data strongly suggest that the appearance of two polymorph modifications for trivalent metal (both transition and main group) hexafluoroacetylacetonates is a common case for several largely used complexes not yet accounted for in the crystallographic databases.
Collapse
Affiliation(s)
- Joyce Chang
- Department of Chemistry, University at Albany, Albany, New York 12222, USA
| | - Julianna N Defeo
- Department of Chemistry, University at Albany, Albany, New York 12222, USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, USA
| | - Evgeny V Dikarev
- Department of Chemistry, University at Albany, Albany, New York 12222, USA
| |
Collapse
|
2
|
Strassner NM, Stipurin S, Koželj P, Grin Y, Strassner T. Electronic Structure and Magnetic Properties of a High-Spin Mn III Complex: [Mn(mesacac) 3 ] (mesacac=1,3-Bis(2,4,6-trimethylphenyl)-propane-1,3-dionato). Chemphyschem 2023; 24:e202200652. [PMID: 36515278 PMCID: PMC10107892 DOI: 10.1002/cphc.202200652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Indexed: 12/15/2022]
Abstract
Metal acetylacetonates of the general formula [M(acac)3 ] (MIII =Cr, Mn, Fe, Co) are among the best investigated coordination compounds. Many of these first-row transition metal complexes are known to have unique electronic properties. Independently, photophysical research with different β-diketonate ligands pointed towards the possibility of a special effect of the 2,4,6-trimethylphenyl substituted acetylacetonate (mesacac) on the electron distribution between ligand and metal (MLCT). We therefore synthesized and fully characterized the previously unknown octahedral title complex. Its solid-state structure shows a Jahn-Teller elongation with two Mn-O bonds of 2.12/2.15 Å and four Mn-O bonds of 1.93 Å. Thermogravimetric data show a thermal stability up to 270 °C. High-resolution mass spectroscopy helped to identify the decomposition pathways. The electronic state and spin configuration of manganese were characterized with a focus on its magnetic properties by measurement of the magnetic susceptibility and triple-zeta density functional theory (DFT) calculations. The high-spin state of manganese was confirmed by the determination of an effective magnetic moment of 4.85 μB for the manganese center.
Collapse
Affiliation(s)
- Nina M Strassner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Sergej Stipurin
- Faculty of Chemistry and Food Chemistry, Physical Organic Chemistry, Technical University Dresden, 01062, Dresden, Germany
| | - Primož Koželj
- Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany
- Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Yuri Grin
- Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Thomas Strassner
- Faculty of Chemistry and Food Chemistry, Physical Organic Chemistry, Technical University Dresden, 01062, Dresden, Germany
| |
Collapse
|
3
|
Conradie J. Reduction potential of benzophenones, hydroxyphenones and bis(2-hydroxyphenone)copper molecules. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Reduction Data Obtained from Cyclic Voltammetry of Benzophenones and Copper-2-Hydroxyphenone Complexes. DATA 2022. [DOI: 10.3390/data7120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article provides detailed redox data on nine differently substituted benzophenones and ten square planar copper(II) complexes containing 2-hydroxyphenones obtained by cyclic voltammetry (CV) experiments. The information provided is related to the published full research articles “An electrochemical and computational chemistry study of substituted benzophenones” (Electrochim. Acta2021, 373, 137894) and “Electrochemical behaviour of copper(II) complexes containing 2-hydroxyphenones” (Electrochim. Acta2022, 424, 140629), where the CVs and electrochemical data at mainly one scan rate, namely at 0.100 Vs−1, are reported. CVs and the related peak current and voltage values, not reported in the related research article, are provided in this article for nine differently substituted benzophenones and ten differently substituted copper-2-hydroxyphenone complexes at various scan rates over more than two orders of magnitude. The redox data presented are the first reported complete set of electrochemical data of nine 2-hydroxyphenones and ten copper(II) complexes containing 2-hydroxyphenone ligands.
Collapse
|
5
|
Redox Data of Tris(polypyridine)manganese(II) Complexes. DATA 2022. [DOI: 10.3390/data7090130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Very little cyclic voltammetry data for tris(polypyridine)manganese(II) complexes, [MnII(N^N)3]2+, where N^N is bipyridine (bpy), phenanthroline (phen) or substituted bpy or phen ligands, respectively; are available in the literature. Cyclic voltammograms were found for tris(4,7-diphenyl-1,10-phenanthroline)manganese(II) perchlorate only. In addition to our recently published related research article, the data presented here provides cyclic voltammograms and corresponding voltage-current data obtained during electrochemical oxidation and the reduction of four [MnII(N^N)3]2+ complexes, using different scan rates and analyte concentrations. The results show increased concentration and scan rates resulting in higher Mn(II/III) peak oxidation potentials and increased peak current-voltage separations of the irreversible Mn(II/III) redox event. The average peak oxidation and peak reduction potentials of the Mn(II/III) redox events stayed constant within 0.01 V. Similarly, the average of the peak oxidation and reduction potentials of the ligand-based reduction events of [MnII(N^N)3]2+ were constant within 0.01 V.
Collapse
|
6
|
Conradie J. Redox chemistry of bis(terpyridine)manganese(II) complexes – a molecular view. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Chiyindiko E, Langner EH, Conradie J. Electrochemical behaviour of 2-hydroxybenzophenones and related molecules. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Ferreira H, Conradie MM, Conradie J. Redox behaviour of imino-β-diketonato ligands and their rhodium(I) complexes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
de Gonzalo G, Alcántara AR. Recent Developments in the Synthesis of β-Diketones. Pharmaceuticals (Basel) 2021; 14:ph14101043. [PMID: 34681266 PMCID: PMC8541089 DOI: 10.3390/ph14101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Apart from being one of the most important intermediates in chemical synthesis, broadly used in the formation of C-C bonds among other processes, the β-dicarbonyl structure is present in a huge number of biologically and pharmaceutically active compounds. In fact, mainly derived from the well-known antioxidant capability associated with the corresponding enol tautomer, β-diketones are valuable compounds in the treatment of many pathological disorders, such as cardiovascular and liver diseases, hypertension, obesity, diabetes, neurological disorders, inflammation, skin diseases, fibrosis, or arthritis; therefore, the synthesis of these structures is an area of overwhelming interest for organic chemists. This paper is devoted to the advances achieved in the last ten years for the preparation of 1,3-diketones, using different chemical (Claisen, hydration of alkynones, decarboxylative coupling) or catalytic (biocatalysis, organocatalytic, metal-based catalysis) methodologies: Additionally, the preparation of branched β-dicarbonyl compounds by means of α-functionalization of non-substituted 1,3-diketones are also discussed.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Organic Chemistry Department, University of Sevilla, c/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| |
Collapse
|
10
|
Gao H, Yu R, Ma Z, Gong Y, Zhao B, Lv Q, Tan Z. Recent advances of organometallic complexes in emerging photovoltaics. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Biao Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| |
Collapse
|
11
|
Mateyise NGS, Ghosh S, Gryzenhout M, Chiyindiko E, Conradie MM, Langner EH, Conradie J. Synthesis, characterization, DFT and biological activity of oligothiophene β-diketone and Cu-complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Jamatia R, Mondal A, Srimani D. Visible‐Light‐Induced Manganese‐Catalyzed Reactions: Present Approach and Future Prospects. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramen Jamatia
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
13
|
Isomerism, conformation, and structure of Bis(4,4-dimethyl-1-phenylpentane-1,3-dionato)copper(II); A theoretical and spectroscopy approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Garda Z, Molnár E, Hamon N, Barriada JL, Esteban-Gómez D, Váradi B, Nagy V, Pota K, Kálmán FK, Tóth I, Lihi N, Platas-Iglesias C, Tóth É, Tripier R, Tircsó G. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorg Chem 2020; 60:1133-1148. [PMID: 33378171 DOI: 10.1021/acs.inorgchem.0c03276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the Mn(II) complexes with two pyclen-based ligands (pyclen = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene) functionalized with acetate pendant arms at either positions 3,6 (3,6-PC2A) or 3,9 (3,9-PC2A) of the macrocyclic fragment. The 3,6-PC2A ligand was synthesized in five steps from pyclen oxalate by protecting one of the secondary amine groups of pyclen using Alloc protecting chemistry. The complex with 3,9-PC2A is characterized by a higher thermodynamic stability [log KMnL = 17.09(2)] than the 3,6-PC2A analogue [log KMnL = 15.53(1); 0.15 M NaCl]. Both complexes contain a water molecule coordinated to the metal ion, which results in relatively high 1H relaxivities (r1p = 2.72 and 2.91 mM-1 s-1 for the complexes with 3,6-PC2A and 3,9-PC2A, respectively, at 25 °C and 0.49 T). The coordinated water molecule displays fast exchange kinetics with the bulk in both cases; the rates (kex298) are 140 × 106 and 126 × 106 s-1 for [Mn(3,6-PC2A)(H2O)] and [Mn(3,9-PC2A)(H2O)], respectively. The two complexes were found to be remarkably inert with respect to their dissociation, with half-lives of 63 and 21 h, respectively, at pH = 7.4 in the presence of excess Cu(II). The r1p values recorded in blood serum remain constant at least over a period of 120 h. Cyclic voltammetry experiments show irreversible oxidation features shifted to higher potentials with respect to [Mn(EDTA)(H2O)]2- (H4EDTA = ethylenediaminetetraacetic acid) and [Mn(PhDTA)(H2O)]2- (H4PhDTA = phenylenediamine-N,N,N',N'-tetraacetic acid), indicating that the PC2A complexes reported here have a lower tendency to stabilize Mn(III). The superoxide dismutase activity of the Mn(II) complexes was tested using the xanthine/xanthine oxidase/p-nitro blue tetrazolium chloride assay at pH = 7.8. The Mn(II) complexes of 3,6-PC2A and 3,9-PC2A are capable of assisting decomposition of the superoxide anion radical. The kinetic rate constant of the complex of 3,9-PC2A is smaller by 1 order of magnitude than that of 3,6-PC2A.
Collapse
Affiliation(s)
| | | | - Nadège Hamon
- Université Brest, UMR-CNRS 6521, CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - José Luis Barriada
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Balázs Váradi
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | | | | | | | | | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Raphaël Tripier
- Université Brest, UMR-CNRS 6521, CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | | |
Collapse
|
15
|
Adeniyi AA, Conradie J. Cyclic Voltammetric and DFT Analysis of the Reduction of Manganese(III) Complexes with 2‐Hydroxybenzophenones. ELECTROANAL 2020. [DOI: 10.1002/elan.202060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Adebayo A. Adeniyi
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
- Department of Industrial Chemistry Federal University Oye-Ekiti Nigeria
| | - Jeanet Conradie
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
- Department of Chemistry UiT – The Arctic University of Norway Tromsø N-9037 Norway
| |
Collapse
|
16
|
|
17
|
X-ray diffraction and QTAIM calculations of the non-covalent intermolecular fluorine-fluorine interactions in tris(trifluoroacetylacetonato)-manganese(III). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chiyindiko E, Conradie J. Redox behaviour of bis(β-diketonato)copper(II) complexes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
McPherson JN, Hogue RW, Akogun FS, Bondì L, Luis ET, Price JR, Garden AL, Brooker S, Colbran SB. Predictable Substituent Control of Co III/II Redox Potential and Spin Crossover in Bis(dipyridylpyrrolide)cobalt Complexes. Inorg Chem 2019; 58:2218-2228. [PMID: 30672281 DOI: 10.1021/acs.inorgchem.8b03457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of five easily prepared tridentate monoanionic 2,5-dipyridyl-3-(R1)-4-(R2)-pyrrolide anions (dppR1,R2)-, varying in the nature of the R1 and R2 substituents [R1, R2 = CN, Ph; CO2Et, CO2Et; CO2Me, 4-Py; CO2Me, Me; Me, Me], has been used to generate the analogous family of neutral [CoII(dppR1,R2)2] complexes, two of which are structurally characterized at both 100 and 298 K. Both the oxidation and spin states of these complexes can be switched in response to appropriate external stimuli. All complexes, except [CoII(dppMe,Me)2], exhibit gradual spin crossover (SCO) in the solid state, and SCO activity is observed for three complexes in CDCl3 solution. The cobalt(II) centers in the low spin (LS) complexes are Jahn-Teller tetragonally compressed along the pyrrolide-Co-pyrrolide axis. The complexes in their high spin (HS) states are more distorted than in the LS states, as is also usually the case for SCO active iron(II) complexes. The reversible CoIII/II redox potentials are predictably tuned by choice of substituents R1 and R2, from -0.95 (Me,Me) to -0.45 (CN,Ph) V vs Fc+/Fc, with a linear correlation observed between E1/2(CoIII/II) and the Swain-Lupton parameters of the pyrrolide substituents.
Collapse
Affiliation(s)
- James N McPherson
- School of Chemistry , The University of New South Wales , Kensington , NSW 2052 , Australia
| | - Ross W Hogue
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology , University of Otago , P.O. Box 56, Dunedin 9054 , New Zealand
| | - Folaranmi Sunday Akogun
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology , University of Otago , P.O. Box 56, Dunedin 9054 , New Zealand
| | - Luca Bondì
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology , University of Otago , P.O. Box 56, Dunedin 9054 , New Zealand
| | - Ena T Luis
- School of Chemistry , The University of New South Wales , Kensington , NSW 2052 , Australia
| | - Jason R Price
- ANSTO, Australian Synchrotron , Clayton , VIC Australia
| | - Anna L Garden
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology , University of Otago , P.O. Box 56, Dunedin 9054 , New Zealand
| | - Sally Brooker
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology , University of Otago , P.O. Box 56, Dunedin 9054 , New Zealand
| | - Stephen B Colbran
- School of Chemistry , The University of New South Wales , Kensington , NSW 2052 , Australia
| |
Collapse
|
20
|
Influence of substituents on the reduction potential and pKa values of β-diketones tautomers: A theoretical study. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Electrochemical properties of a series of Co(II) complexes, containing substituted phenanthrolines. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Buitendach BE, Erasmus E, Niemantsverdriet JW, Swarts JC. Can Electrochemical Measurements Be Used To Predict X-ray Photoelectron Spectroscopic Data? The Case of Ferrocenyl-β-Diketonato Complexes of Manganese(III). Inorg Chem 2018; 57:6606-6616. [PMID: 29762020 DOI: 10.1021/acs.inorgchem.8b00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to better understand intramolecular communication between molecular fragments, a series of ferrocene-functionalized β-diketonato manganese(III) complexes, [Mn(FcCOCHCOR)3] with R = CF3, 1, CH3, 2, Ph = C6H5, 3, and Fc = FeII(η5-C5H4)(η5-C5H5), 4, the mixed ligand β-diketonato complex [Mn(FcCOCHCOFc)2(FcCOCHCOCH3)], 5, as well as the acac complex [Mn(CH3COCHCOCH3)3], 6, were subjected to an electrochemical and X-ray photoelectron spectroscopy (XPS) study. The ferrocenyl (FeII) and MnIII redox potentials, E°', and photoelectron lines were sufficiently resolved in each complex to demonstrate a linear correlation between E°' and group electronegativities of ligand R groups, χR, or ΣχR, as well as with binding energies of both the Fe 2p3/2 and Mn 2p3/2 photoelectron lines. These relationships are consistent with effective communication between molecular fragments of 1-5. From these relationships, prediction of Mn and Fe core electron binding energies in [Mn(R1COCHCOR2)3] complexes from known manganese and/or ferrocenyl redox potentials are, therefore, now possible. Ligand infrared carbonyl stretching frequencies were successfully related to binding energy as a measure of the energy required for inner-sphere reorganization. In particular it became possible to explain why, upon electrochemical oxidation or photoionization, the ferrocenyl FeII inner-shell of 1-5 needs more energy in complexes with ligands bearing electron-withdrawing (CF3) groups than in ligands bearing electron-donating groups such as ferrocenyl. The XPS determined entity Iratio (the ratio between the intensities of the satellite and main metal 2p3/2 photoelectron lines) is an indication not only of the amount of charge transferred, but also of the degree of inner-sphere reorganization. Just as for binding energy, the quantity Iratio was also found to be related to the energy requirements for the inner-sphere reorganization depicted by the vibrational frequency, vco.
Collapse
Affiliation(s)
| | - Elizabeth Erasmus
- Department of Chemistry , University of the Free State , Bloemfontein 9300 , South Africa
| | | | - Jannie C Swarts
- Department of Chemistry , University of the Free State , Bloemfontein 9300 , South Africa
| |
Collapse
|
23
|
von Eschwege KG, Conradie J. Iron phenanthrolines: A density functional theory study. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Kuhn A, Conradie J. Orbital control over the metal vs. ligand reduction in a series of neutral and cationic bis(cyclopentadienyl) Ti( iv) complexes. NEW J CHEM 2018. [DOI: 10.1039/c7nj03746e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LUMO of a complex reveals the extent of the electronic influence of ligand substituents on the reduction centre of the complex.
Collapse
Affiliation(s)
- Annemarie Kuhn
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
25
|
Pflock S, Beyer A, Müller L, Burzlaff N. Homoleptic, di- and trivalent transition metal complexes with monoanionic N,N,O-heteroscorpionate ligands: Potential redox mediators for dye-sensitized solar cells? Polyhedron 2017. [DOI: 10.1016/j.poly.2016.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gostynski R, Conradie J, Erasmus E. Significance of the electron-density of molecular fragments on the properties of manganese(iii) β-diketonato complexes: an XPS and DFT study. RSC Adv 2017. [DOI: 10.1039/c7ra04921h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The group electronegativity of the R-groups of the ligand influences the XPS binding energies and the amount of charge transferred in the Mn 2p3/2 photoelectron lines. DFT studies illustrated different Jahn–Teller elongation bond stretch isomers.
Collapse
Affiliation(s)
- Roxanne Gostynski
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| | - Elizabeth Erasmus
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
27
|
Ferreira H, Conradie MM, von Eschwege KG, Conradie J. Electrochemical and DFT study of the reduction of substituted phenanthrolines. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
|
29
|
|
30
|
Kuhn A, Conradie J. Synthesis, electrochemical and DFT study of octahedral bis(β-diketonato)-titanium(IV) complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ferreira H, von Eschwege KG, Conradie J. Electronic properties of Fe charge transfer complexes – A combined experimental and theoretical approach. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Jahn-Teller distortion in tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]manganese(III) isomers: An X-ray and computational study. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Carli S, Benazzi E, Casarin L, Bernardi T, Bertolasi V, Argazzi R, Caramori S, Bignozzi CA. On the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs. Phys Chem Chem Phys 2016; 18:5949-56. [PMID: 26751983 DOI: 10.1039/c5cp05524e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoelectrochemical properties and stability of dye sensitized solar cells containing Mn(β-diketonato)3 complexes, [Mn(III)(acac)3] () (acac = acetylacetonate), [Mn(III)(CF2)3] () (CF2 = 4,4-difluoro-1-phenylbutanate-1,3-dione), [Mn(III)(DBM)3] () (DBM = dibenzoylmethanate), [Mn(II)(CF2)3]TBA (TBA = tetrabutylammonium) () and [Mn(II)(DBM)3]TBA (), have been evaluated. At room temperature, the complexes undergo ligand exchange with 4-tert-butyl-pyridine, an additive commonly used in the solar device to reduce charge recombination at the photoanode. An increased device stability was achieved by using the Z907 dye and passivating the photoanode with short chain siloxanes. It was also found that the Mn(ii)/(iii) couple is involved in the dye regeneration process, instead of Mn(iii)/(iv) (E1/2 > 1 V vs. SCE) previously indicated in the literature.
Collapse
Affiliation(s)
- Stefano Carli
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Elisabetta Benazzi
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Laura Casarin
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Tatiana Bernardi
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Valerio Bertolasi
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Roberto Argazzi
- CNR-ISOF c/o Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| | - Carlo Alberto Bignozzi
- Department of Chemical and Pharmaceutical Sciences of the University of Ferrara, Via Fossato di Mortara 17-27, 44121, Ferrara, Italy.
| |
Collapse
|
34
|
|
35
|
Liu R, Conradie J. Tris(β-diketonato)chromium(III) complexes: Effect of the β-diketonate ligand on the redox properties. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
|