1
|
Angizi S, Rahmati R, Hatamie A, Nobakht V, Simchi A. Two-Dimensional Nanorod-Shaped Co(II) Coordination Polymer on Three-Dimensional Metallic Foam: A Hybrid Platform for Electrochemical Oxidation of Glucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17689-17698. [PMID: 39161300 DOI: 10.1021/acs.langmuir.4c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
This study unveils a novel electrochemical biosensor for monitoring glucose in biological fluids by employing nanorods of a cobalt-bispyridyl/dicarboxylate framework grown in a layer-by-layer manner on a highly porous nickel substrate. The hybrid microporous system has a bicatalytic effect on glucose oxidation due to the synergistic catalytic impact of the nickel and cobalt ions with varying oxidation states as electroactive sites. In addition, the controlled growth of inorganic-organic frameworks changes the mechanism of electron transfer from a diffusion-controlled process to an adsorption-controlled process, thus yielding a low onset oxidation potential (∼0.21 V/Ag-AgCl) and a high current intensity (∼1 mA) for the oxidation of glucose in alkaline media. A fast response time (∼2 s) and a reasonably high sensitivity (0.14 μA μM-1) within a broad linear range (40-360 μM) have determined the suitability and superiority of the hybrid electrode for glucose monitoring compared to many metal-organic-based biosensors. The facile fabrication process of the Co(II) coordination polymer/Ni substrate with a large surface area that benefits from the synergetic catalytic activity of nickel-cobalt hybrids may pave the way for the development of novel hybrid electrodes for biosensors and direct glucose fuel cells.
Collapse
Affiliation(s)
- Shayan Angizi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4M1, Canada
| | - Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran
- University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135743135, Iran
| | - Abdolreza Simchi
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359 Bremen, Germany
| |
Collapse
|
2
|
de Souza CC, Lisboa TP, de Oliveira WBV, Abarza Muñoz RA, Costa Matos MA, Matos RC. Simple strategy for the detection of the amoxicillin antibiotic in different matrices using a low-cost paper electrode. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Electrochemical Sensing of Pb2+ and Cd2+ Ions with the Use of Electrode Modified with Carbon-Covered Halloysite and Carbon Nanotubes. Molecules 2022; 27:molecules27144608. [PMID: 35889475 PMCID: PMC9324300 DOI: 10.3390/molecules27144608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
A novel voltammetric method for the sensitive and selective determination of cadmium and lead ions using screen-printed carbon electrodes (SPCEs) modified with carbon-deposited natural halloysite (C_Hal) and multi-walled carbon nanotubes (MWCNTs) was developed. The electrochemical properties of the proposed sensor were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), while the morphology and structure were established by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A two-factorial central composite design (CCD) was employed to select the composition of the nanocomposite modifying the electrode surface. The optimal measuring parameters of differential pulse anodic stripping voltammetry (DPASV) used for quantitative analysis were established with the Nelder–Mead simplex method. In the analytical investigation of Cd(II) and Pb(II) ions by DPASV, the MWCNTs/C_Hal/Nafion/SPCE exhibited a linear response in the concentration range of 0.1–10.0 µmol L−1 (for both ions) with a detection limit of 0.0051 and 0.0106 µmol L−1 for Pb(II) and Cd(II), respectively. The proposed sensor was successfully applied for the determination of metal ions in different natural water and honey samples with recovery values of 96.4–101.6%.
Collapse
|
4
|
Beitollahi H, Tajik S, Di Bartolomeo A. Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide. MICROMACHINES 2022; 13:mi13040598. [PMID: 35457903 PMCID: PMC9028730 DOI: 10.3390/mi13040598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023]
Abstract
The current work introduced a convenient single-phase hydrothermal protocol to fabricate MnO2 nanorods (MnO2 NRs). Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscopy (FE-SEM) were used to determine the characteristics of MnO2 NR. Then, ionic liquid (IL) and MnO2 NRs were utilized to modify a carbon paste electrode (CPE) surface (MnO2NR-IL/CPE) to voltammetrically sense the sulfanilamide (SAA). An enhanced voltammetric sensitivity was found for the as-developed modified electrode toward SAA when compared with a bare electrode. The optimization experiments were designed to achieve the best analytical behavior of the SAA sensor. Differential pulse voltammetry (DPV) in the optimized circumstances portrayed a linear dependence on various SAA levels (between 0.07 and 100.0 μM), possessing a narrow detection limit (0.01 μM). The ability of the modified electrode to be used in sensor applications was verified in the determination of SAA present in the actual urine and water specimens, with impressive recovery outcomes.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran;
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (S.T.); (A.D.B.)
| | - Antonio Di Bartolomeo
- Physics Department “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence: (S.T.); (A.D.B.)
| |
Collapse
|
5
|
Electrochemical sensing of antibiotic drug amoxicillin in the presence of dopamine at simple and selective carbon paste electrode activated with cetyltrimethylammonium bromide surfactant. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Highly selective and sensitive differential pulse voltammetric method based on poly(Alizarin)/GCE for determination of cefadroxil in tablet and human urine samples. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Synthesis, characterization, and electropolymerization of a novel Cu(II) complex based on 1,10-phenanthroline for electrochemical determination of amoxicillin in pharmaceutical tablet formulations. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W. Studying the preparation, electrochemical performance testing, comparison and application of a cost-effective flexible graphene working electrode. J Colloid Interface Sci 2021; 583:487-498. [PMID: 33017693 DOI: 10.1016/j.jcis.2020.08.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
-A cost-effective flexible graphene working electrode (FGWE) was fabricated using overhead projector transparent film (OPTF) and a screen-printing technique. The surface morphology and electrochemical behavior of the electrode were characterized by scanning electron microscopy and cyclic voltammetry. The electrode presented a very thin layer of conductive ink (16.0 ± 0.7 µm) on a large effective surface area (0.301 ± 0.001 cm-2). The anodic peak current density (jpa) of acetaminophen (ACT) in FGWE was 5.2, 3.7, 3.5 and 6.0 times greater than the jpa of glassy carbon electrode (GCE), flexible carbon working electrode (FCWE), SPE1, and SPE2, respectively. The electrochemical performance of FGWE toward ACT was evaluated by differential pulse voltammetry. Under optimized condition, ACT was quantified in a range of 4-100 µM, with good sensitivity, good accuracy (recovery = 82.3 ± 0.4 to 106 ± 3%), and excellent precision. FGWE was applied to determine ACT in commercial pharmaceutical formulations. The results of the study are in good agreement with those obtained by the standard spectrophotometric method. These results indicate that disposable FGWE is particularly useful for the detection of ACT, and its performance may serve as a platform for cost-effective flexible electrochemical sensors.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
10
|
Valenga MGP, Felsner ML, de Matos CF, de Castro EG, Galli A. Development and validation of voltammetric method for determination of amoxicillin in river water. Anal Chim Acta 2020; 1138:79-88. [PMID: 33161987 DOI: 10.1016/j.aca.2020.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Amoxicillin is an antibiotic that can accumulate in aquatic environments and lead to the development of resistant bacteria; thus, its determination is of great importance. In this study, a glassy carbon electrode modified with reduced graphene oxide and Nafion was used as a sensor in a square-wave voltammetry method for determination of amoxicillin in river water samples from Guarapuava city, Brazil. The method was validated, using parameters and statistical tools recommended by the validation guidelines, in the range of 1.8-5.4 μmol L-1 (r = 0.922 and R2 = 85.1%). The analytical curve was constructed using external standard calibration in pure electrolyte, since the matrix effect was not significant. Results of linear regression analysis, lack of fit test and analysis of the residual plots pointed that the linear regression was significant, without lack of fit of linear model and that the variances had homoscedastic distribution. Both coefficients of regression curve were significant and, thus, they were included in the regression equation: Response = 7.0 + 3.5CAMX. The limits of detection and quantification were 0.36 and 1.2 μmol L-1, respectively. The method was selective towards interferents such as humic acids and benzylpenicillin. The relative standard deviations for repeatability and intermediate precision were adequate according to the limits established in literature. The mean recoveries were statistically equal to those obtained through a comparative chromatography method, so, the accuracy of the method was also adequate. Therefore, the method can be applied to the voltammetric determination of amoxicillin in river water, affording reliable and consistent measurements.
Collapse
Affiliation(s)
| | - Maria Lurdes Felsner
- Universidade Estadual Do Centro-Oeste, Departamento de Química, Guarapuava, Paraná, 85040-080, Brazil
| | - Carolina Ferreira de Matos
- Universidade Federal Do Pampa, Departamento de Química, Caçapava Do Sul, 96570-000, Rio Grande do Sul, Brazil
| | - Eryza Guimarães de Castro
- Universidade Estadual Do Centro-Oeste, Departamento de Química, Guarapuava, Paraná, 85040-080, Brazil
| | - Andressa Galli
- Universidade Estadual Do Centro-Oeste, Departamento de Química, Guarapuava, Paraná, 85040-080, Brazil
| |
Collapse
|
11
|
Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 2020; 137:107687. [PMID: 33160182 DOI: 10.1016/j.bioelechem.2020.107687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Amoxicillin (AMX) is among the most successful antibiotics used for human therapy. It is used extensively to prevent or treat bacterial infections in humans and animals. However, the widespread distribution and excess utilization of AMX can be an environmental and health risk due to the hazardous potential associated to its pharmaceutical industries effluents. Besides, their extensive use in food animal production may result in some undesirable residues in food, e.g. meat, eggs and milk. Consequently, at high enough concentrations in biological fluids, AMX may be responsible of various diseases such as nausea, vomiting, rashes, and antibiotic-associated colitis. For this reason, the detection and quantification of amoxicillin in pharmaceuticals, biological fluids, environmental samples and foodstuffs require new electroanalytical techniques with sensitive and rapid measurement abilities. This review discusses recent advances in the development of electrochemical sensors and bio-sensors for AMX analysis in complex matrices such as pharmaceuticals, biological fluids, environmental water and foodstuffs. The main electrochemical sensors used are based on chemically modified electrodes involving carbon materials and nanomaterials, nanoparticles, polymers and biological recognition molecules.
Collapse
|
12
|
Kamyabi MA, Alipour Z, Moharramnezhad M. Amplified cathodic electrochemiluminescence of luminol based on zinc oxide nanoparticle modified Ni-foam electrode for ultrasensitive detection of amoxicillin. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Liu Y, Wen GL, Chen X, Weerasooriya R, Hong ZY, Wang LC, Huang ZJ, Wu YC. Construction of electrochemical sensing interface towards Cd(II) based on activated g-C 3N 4 nanosheets: considering the effects of exfoliation and protonation treatment. Anal Bioanal Chem 2019; 412:343-353. [PMID: 31776638 DOI: 10.1007/s00216-019-02240-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
There is an urgent need to construct highly selective low-cost sensors for fast detection of toxic metal ions such as cadmium. When compared with 3D bulk materials, 2D layered materials after activation treatments show superior performances for electrochemical metal ion detection. The bulk graphitic carbon nitride (hereafter b-g-C3N4) was prepared by thermal polymerization with urea as a precursor; it was then activated through ultrasonic liquid exfoliation and protonation which resulted in successful fabrication of activated ultrathin g-C3N4 nanosheets (hereafter a-g-C3N4). The a-g-C3N4-modified glassy carbon electrode demonstrates excellent electrochemical performances for Cd2+ detection with 22.668 μA/μM sensitivity and 3.9 nM LOD (S/N = 3) due to high specific surface area and active sites created on the 2D layered structure. The chemical interference of Pb2+, Cu2+, and Hg2+ on Cd2+ detection was minimal. We have also measured Cd2+ in natural water and rice samples using the newly developed a-g-C3N4-modified electrode with high spike recoveries. Our results demonstrate the potential applications of newly developed a-g-C3N4-modified electrode for rapid detection of toxic metal ions in different sample matrixes. Graphical Abstract The activated g-C3N4 nanosheets (a-g-C3N4) were synthesized and used to construct electrochemical sensors with high sensitivity and anti-interference performance.
Collapse
Affiliation(s)
- Yao Liu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Ge-Ling Wen
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China.,School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xing Chen
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China. .,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China. .,School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China.,National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - Zhan-Yong Hong
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lian-Chao Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Zhong-Jia Huang
- School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Yu-Cheng Wu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China.,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| |
Collapse
|
14
|
Bilkiss M, Shiddiky MJA, Ford R. Advanced Diagnostic Approaches for Necrotrophic Fungal Pathogens of Temperate Legumes With a Focus on Botrytis spp. Front Microbiol 2019; 10:1889. [PMID: 31474966 PMCID: PMC6702891 DOI: 10.3389/fmicb.2019.01889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Plant pathogens reduce global crop productivity by up to 40% per annum, causing enormous economic loss and potential environmental effects from chemical management practices. Thus, early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control is crucial. Botrytis Gray Mold (BGM), caused by Botrytis cinerea and B. fabae, can seriously impact production of temperate grain legumes separately or within a complex. Accordingly, several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity and consequent usefulness within the paddock. To substantially improve speed, accuracy and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. These novel methods have made enormous impact toward disease diagnosis in the medical sciences and offer potential for transformational change within the field of plant pathology and disease management, with early and accurate diagnosis at the point-of-care in the field. Here we review several recently developed diagnostic tools that build on traditional approaches and are available for pathogen diagnosis, specifically for Botrytis spp. diagnostic applications. We then identify the specific gaps in knowledge and current limitations to these existing tools.
Collapse
Affiliation(s)
- Marzia Bilkiss
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia.,Queensland Micro- and Nanotechnology Centre (QMNC), Nathan, QLD, Australia
| | - Rebecca Ford
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
15
|
Srivastava AK, Upadhyay SS, Rawool CR, Punde NS, Rajpurohit AS. Voltammetric Techniques for the Analysis of Drugs using Nanomaterials based Chemically Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180510152154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Electroanalytical techniques play a very important role in the areas of medicinal,
clinical as well as pharmaceutical research. Amongst these techniques, the voltammetric methods
for the determination of drugs using nanomaterials based chemically modified electrodes (CMEs)
have received enormous attention in recent years. This is due to the sensitivity and selectivity they
provide on qualitative as well as quantitative aspects of the electroactive analyte under study. The aim
of the present review was to discuss the work on nanomaterials based CMEs for the analysis of drugs
covering the period from 2000 to present employing various voltammetric techniques for different
classes of the drugs.
Methods:
The present review deals with the determination of different classes of drugs including analgesics,
anthelmentic, anti-TB, cardiovascular, antipsychotics and anti-allergic, antibiotic and gastrointestinal
drugs. Also, a special section is devoted for enantioanalysis of certain chiral drugs using
voltammetry. The detailed information of the voltammetric determination for the drugs from each
class employing various techniques such as differential pulse voltammetry, cyclic voltammetry, linear
sweep voltammetry, square wave voltammetry, stripping voltammetry, etc. are presented in tabular
form below the description of each class in the review.
Results:
Various nanomaterials including carbon nanotubes, graphene, carbon nanofibers, quantum
dots, metal/metal oxide nanoparticles, polymer based nanocomposites have been used by researchers
for the development of CMEs over a period of time. The large surface area to volume ratio, high conductivity,
electrocatalytic activity and biocompatibility make them ideal modifiers where they produce
synergistic effect which helps in trace level determination of pharmaceutical, biomedical and medicinal
compounds. In addition, macrocyclic compounds as chiral selectors have been used for the determination
of enantiomeric drugs where one of the isomers captured in the cavities of chiral selector
shows stronger binding interaction for one of the enantiomorphs.
Conclusion:
arious kinds of functional nanocomposites have led to the manipulation of peak potential
due to drug - nanoparticles interaction at the modified electrode surface. This has facilitated the
simultaneous determination of drugs with almost similar peak potentials. Also, it leads to the enhancement
in voltammetric response of the analytes. It is expected that such modified electrodes can
be easily miniaturized and used as portable, wearable and user friendly devices. This will pave a way
for in-vivo onsite real monitoring of single as well as multi component pharmaceutical compounds.
Collapse
Affiliation(s)
- Ashwini K. Srivastava
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Sharad S. Upadhyay
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Chaitali R. Rawool
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Ninad S. Punde
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Anuja S. Rajpurohit
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| |
Collapse
|
16
|
Farshadinia A, Kolahdoozan M. A new porous copolymer electrocatalyst: the optimal synthesis, characterization, and application for the measurement of amoxicillin. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-018-01282-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Pollap A, Knihnicki P, Kuśtrowski P, Kozak J, Gołda-Cępa M, Kotarba A, Kochana J. Sensitive Voltammetric Amoxicillin Sensor Based on TiO2
Sol Modified by CMK-3-type Mesoporous Carbon and Gold Ganoparticles. ELECTROANAL 2018. [DOI: 10.1002/elan.201800203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandra Pollap
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Paweł Knihnicki
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Piotr Kuśtrowski
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Joanna Kozak
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Monika Gołda-Cępa
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Andrzej Kotarba
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| | - Jolanta Kochana
- Jagiellonian University; Faculty of Chemistry; Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
18
|
Regiart M, Rinaldi-Tosi M, Aranda PR, Bertolino FA, Villarroel-Rocha J, Sapag K, Messina GA, Raba J, Fernández-Baldo MA. Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. Talanta 2017; 175:535-541. [DOI: 10.1016/j.talanta.2017.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
|
19
|
Nosuhi M, Nezamzadeh-Ejhieh A. Comprehensive study on the electrocatalytic effect of copper – doped nano-clinoptilolite towards amoxicillin at the modified carbon paste electrode – solution interface. J Colloid Interface Sci 2017; 497:66-72. [DOI: 10.1016/j.jcis.2017.02.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/15/2023]
|
20
|
Deng J, Wang M, Zhang P, Ye W. Preparing ZnO nanowires in mesoporous TiO 2 photoanode by an in-situ hydrothermal growth for enhanced light-trapping in quantum dots-sensitized solar cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|