1
|
Kanagaraj T, Manikandan V, Ganesan S, Albeshr MF, Mythili R, Song KS, Lo HM. Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:172. [PMID: 38592578 DOI: 10.1007/s10653-024-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g-1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm - 2 and 0.17 mA cm - 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.
Collapse
Affiliation(s)
- Thamaraiselvi Kanagaraj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
| | - Velu Manikandan
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai, 600077, India
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan.
| |
Collapse
|
2
|
Khalaf MM, Abd El-Lateef HM, Mohamed IMA. Novel electrocatalysts for ethylene glycol oxidation based on functionalized phosphates of bimetals Mn/Ni: Morphology, crystallinity, and electrocatalytic performance. SURFACES AND INTERFACES 2023; 38:102850. [DOI: 10.1016/j.surfin.2023.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Zhao Y, Yuan ZH, Huang JT, Wang MY, He B, Ding Y, Jin PJ, Chen Y. Rhodium metallene-supported platinum nanocrystals for ethylene glycol oxidation reaction. NANOSCALE 2023; 15:1947-1952. [PMID: 36625286 DOI: 10.1039/d2nr06138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-temperature fuel cells have great application potential in electric vehicles and portable electronic devices, which need advanced electrocatalysts. Controlling the composition and morphology of electrocatalysts can effectively improve their catalytic performance. In this work, a Rh metallene (Rhlene)-supported Pt nanoparticle (Pt/Rhlene) electrocatalyst is successfully synthesized by a simple chemical reduction method, in which ultra-small Pt nanoparticles are uniformly attached to the Rhlene surface due to the high surface area of Rhlene. Pt/Rhlene reveals a 3.60-fold Pt-mass activity enhancement for the ethylene glycol oxidation reaction in alkaline solution compared with commercial Pt black, and maintains high stability and excellent poisoning-tolerance during electrocatalysis, owing to the specific physical/chemical properties of Rhlene. The superior electrocatalytic performance of Pt/Rhlene may open an avenue to synthesize other metallene-supported noble metal nanoparticle hybrids for various electrocatalytic applications.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zi-Han Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Jiang-Tao Huang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China.
| | - Ming-Yao Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China.
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Pu-Jun Jin
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
4
|
Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Zhang Q, Shao T, Li Y, Bai D, Xue Z, He S, Zhang D, Zhou X. One-step fabrication of bimetallic PtPd mesoporous nanospheres for methanol electrooxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Facile synthesis of AgPt nano-pompons for efficient methanol oxidation: Morphology control and DFT study on stability enhancement. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yin S, Xu Y, Liu S, Yu H, Wang Z, Li X, Wang L, Wang H. Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. NANOSCALE 2020; 12:14863-14869. [PMID: 32633743 DOI: 10.1039/d0nr02686g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of doped noble metal catalysts with nonmetal elements to improve the catalytic performance toward the oxygen reduction reaction (ORR) is significant for proton exchange membrane fuel cell technology. Here, we report a one-pot for dual-nonmetal-doping strategy for the synthesis of S and P-co-doped mesoporous PtPd nanocages (PtPdSP mNCs) by using pre-synthesized mesoporous PtPd nanocages (PtPd mNCs) as the precursor and triphenylphosphine sulphide as both S and P sources. Benefitting from the combined advantages of metal-nonmetal incorporation, hollow cavity and surface porosity, the resultant quaternary PtPdSP mNCs exhibit outstanding ORR activity and long-term stability. This research work provides a good strategy for the doping of two or more selected nonmetallic elements into metallic nanocrystals with a controllable structure and composition.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gao H, Zhai C, Yuan C, Liu ZQ, Zhu M. Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Sun R, Ren F, Wang D, Yao Y, Fei Z, Wang H, Liu Z, Xing R, Du Y. Polydopamine functionalized multi-walled carbon nanotubes supported PdAu nanoparticles as advanced catalysts for ethylene glycol oxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Zhao Y, Wu L, Zhou K, Lang J, Wang G, Tian P, Wang X. Palladium-loaded tantalum oxide modified Pt electrode toward electrochemical oxidation of ethylene glycol. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhang H, Zhai C, Gao H, Fu N, Zhu M. Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic PtNi on 2D molybdenum disulfide/reduced graphene oxide nanosheets. J Colloid Interface Sci 2019; 547:102-110. [PMID: 30947094 DOI: 10.1016/j.jcis.2019.03.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/20/2023]
Abstract
In this paper, a two-dimensional (2D) hybrid material of molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) is facilely synthesized and used as an ideal support for the deposition of Pt nanoparticles. The as-prepared Pt/MoS2/RGO composites are further worked as electrocatalysts towards ethylene glycol oxidation reaction (EGOR). In addition, when alloying with Ni, the composite shows obvious enhancement in electrocatalytic performance for EGOR. Specifically, the optimized molar ratio of Pt to Ni is 3:1, namely Pt3Ni/MoS2/RGO performs the strongest current density of 2062 mA mg-1Pt, which is 11.1, 5.80 and 2.40 times higher than those of Pt, Pt3Ni and Pt/MoS2/RGO electrodes, respectively. The systematically electrochemical measurements indicate that the largely promoted electrocatalytic performances of Pt3Ni/MoS2/RGO are mainly attributed to the synergistic effect of Ni and Pt, and 2D sheets of MoS2/RGO. This excellent performance indicates that the reported electrocatalytic material could be an efficient catalyst for the application in direct ethylene glycol fuel cell and beyond.
Collapse
Affiliation(s)
- Hongmin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Haifeng Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Nianqing Fu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Mingshan Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China; School of Environment, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
12
|
Li Z, Gu B, Jiang Z, Zhao X, Zhu W, Zhang Y, Li T, Du X, Wu J. Three-dimensional flower-like Pd3Pb nanocrystals enable efficient ethylene glycol electrocatalytic oxidation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hathoot AA, Hassan KM, Ali AG, Shatla AS, Baltruschat H, Abdel-Azzem M. Mono and dual hetero-structured M@poly-1,2 diaminoanthraquinone (M = Pt, Pd and Pt–Pd) catalysts for the electrooxidation of small organic fuels in alkaline medium. RSC Adv 2019; 9:1849-1858. [PMID: 35516099 PMCID: PMC9059733 DOI: 10.1039/c8ra09342c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Oxidation of some small organic fuels such as methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) was carried out in an alkaline medium using palladium (Pd)–platinum (Pt) nanoparticles/poly1,2-diaminoanthraquinone/glassy carbon (p1,2-DAAQ/GC) catalyst electrodes. Pd and Pt were incorporated into the p1,2-DAAQ/GC electrode using the cyclic voltammetry (CV) technique. The obtained Pd/p1,2-DAAQ/GC, Pt/p1,2-DAAQ/GC, Pt/Pd/p1,2-DAAQ/GC and Pd/Pt/p1,2-DAAQ/GC nanocatalyst electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and CV methods. Real active surface area (Areal) achieved by carbon monoxide (CO) adsorption using differential electrochemical mass spectroscopy (DEMS) technique. The electrochemical activity was evaluated and normalized to Areal per metal loading mass. The electrocatalytic oxidation of the small organic fuels at the prepared nanocatalyst electrodes was studied in 1.0 M NaOH solutions by CV and chronoamperometric (CA) techniques. Pt/Pd/p1,2-DAAQ/GC nanocatalyst electrode exhibited enhanced catalytic activity, better durability and higher tolerance to carbon monoxide generated in the oxidation reaction when compared with the other three studied nanocatalysts. The present investigation suggests that the studied nanocatalysts can be successfully applied in direct oxidation of small organic fuels, especially MeOH. Oxidation reaction of some small organic fuels such as methanol, ethanol and ethylene glycol was carried out in alkaline medium at palladium (Pd)–platinum (Pt) nanoparticles/poly1,2-diaminoanthraquinone/glassy carbon catalyst electrodes.![]()
Collapse
Affiliation(s)
- Abla Ahmed Hathoot
- Electrochemistry Laboratory
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shibin El-Kom 32511
| | - Khalid Mahmoud Hassan
- Electrochemistry Research Laboratory
- Physics and Mathematics Engineering Department
- Faculty of Electronic Engineering
- Menoufia University
- Menouf 23952
| | - Asmaa Galal Ali
- Electrochemistry Laboratory
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shibin El-Kom 32511
| | - Ahmed Said Shatla
- Electrochemistry Laboratory
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shibin El-Kom 32511
| | - Helmut Baltruschat
- Institute of Physical and Theoretical Chemistry
- Bonn University
- D-53117 Bonn
- Germany
| | - Magdi Abdel-Azzem
- Electrochemistry Laboratory
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shibin El-Kom 32511
| |
Collapse
|
14
|
Chen XL, Zhang L, Feng JJ, Wang W, Yuan PX, Han DM, Wang AJ. Facile solvothermal fabrication of polypyrrole sheets supported dendritic platinum-cobalt nanoclusters for highly efficient oxygen reduction and ethylene glycol oxidation. J Colloid Interface Sci 2018; 530:394-402. [DOI: 10.1016/j.jcis.2018.06.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
15
|
Ren G, Liu Y, Wang W, Wang M, Zhou Y, Wu S, Shen J. Facilitated Utilization of Active Sites with Core‐Shell PdPt@Pt/RGO Nanocluster Structures for Improved Electrocatalytic Ethylene Glycol Oxidation. ChemElectroChem 2018. [DOI: 10.1002/celc.201800436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guohong Ren
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Yajun Liu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Weigang Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Mingqian Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Yang Zhou
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Shishan Wu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Jian Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| |
Collapse
|
16
|
|
17
|
Zheng Y, Qiao J, Yuan J, Shen J, Wang AJ, Gong P. One-pot synthesis of a PtPd dendritic nanocube cage superstructure on graphenes as advanced catalysts for oxygen reduction. NANOTECHNOLOGY 2018; 29:10LT01. [PMID: 29336352 DOI: 10.1088/1361-6528/aaa809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
How to use Pt economically and efficiently in the oxygen reduction reaction (ORR) is of theoretical and practical significance for the industrialization of the proton-exchange membrane fuel cells. In order to minimize Pt consumption and optimize the ORR performance, the ORR catalysts are recommended to be designed as a porous nanostructure. Herein, we report a one-pot solvothermal strategy to prepare PtPd dendritic nanocube cages via a galvanic replacement mechanism triggered by an I- ion. These PtPd alloy crystals are nanoporous, and uniformly dispersed on reduced graphene oxides (RGOs). The size of the PtPd dendritic nanocube cages can be easily tuned from 20-80 nm by controlling their composition. Their composition is optimized to be 1:5 Pt/Pd atomic ratio for these RGO-supported PtPd dendritic nanocages. This catalyst shows superior ORR performance with a specific activity of 2.01 mA cm-2 and a mass activity of 4.45 A mg-1 Pt, far above those for Pt/C catalysts (0.288 mA cm-2 for specific activity, and 0.21 A mg-1 Pt for mass activity). In addition to ORR activity, it also exhibits robust durability with almost negligible decay in ORR mass activity after 10 000 voltammetric cycling.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004 People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Li DN, Wang AJ, Wei J, Zhang QL, Feng JJ. Dentritic platinum-palladium/palladium core-shell nanocrystals/reduced graphene oxide: One-pot synthesis and excellent electrocatalytic performances. J Colloid Interface Sci 2018; 514:93-101. [DOI: 10.1016/j.jcis.2017.11.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
|
19
|
Xu H, Liu C, Song P, Wang J, Gao F, Zhang Y, Shiraishi Y, Di J, Du Y. Ethylene Glycol Electrooxidation Based on Pentangle-Like PtCu Nanocatalysts. Chem Asian J 2018; 13:626-630. [DOI: 10.1002/asia.201800029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/23/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Chaofan Liu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi; Yamaguchi 756-0884 Japan
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
- Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi; Yamaguchi 756-0884 Japan
| |
Collapse
|
20
|
A new label-free electrochemical immunosensor based on dendritic core-shell AuPd@Au nanocrystals for highly sensitive detection of prostate specific antigen. Biosens Bioelectron 2018; 99:458-463. [DOI: 10.1016/j.bios.2017.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
|
21
|
Raj kumar T, Jin Yoo D, Kim AR, Gnana kumar G. Green synthesis of Pt–Pd bimetallic nanoparticle decorated reduced graphene oxide and its robust catalytic activity for efficient ethylene glycol electrooxidation. NEW J CHEM 2018. [DOI: 10.1039/c8nj02782j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple one-pot green synthesis technique is developed to prepare the Pt–Pd bimetallic nanoparticles decorated reduced graphene oxide nanocomposite and its robust catalytic activity for efficient and durable ethylene glycol oxidation is realized.
Collapse
Affiliation(s)
- T. Raj kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625-021
- India
| | - Dong Jin Yoo
- Department of Life Science
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Jeollabuk-do 54896
- Republic of Korea
| | - Ae Rhan Kim
- R&D Center for CANUTECH
- Business Incubation Center and Department of Bioenvironmental Chemistry
- Chonbuk National University
- Jeollabuk-do 54896
- Republic of Korea
| | - G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625-021
- India
| |
Collapse
|
22
|
Mixed Zinc/Manganese on Highly Reduced Graphene Oxide: A Highly Active Nanocomposite Catalyst for Aerial Oxidation of Benzylic Alcohols. Catalysts 2017. [DOI: 10.3390/catal7120391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Li S, Xu H, Yan B, Zhang K, Wang J, Wang C, Guo J, Du Y, Yang P. Facile construction of satellite-like PtAu nanocrystals with dendritic shell as highly efficient electrocatalysts toward ethylene glycol oxidation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Zhou L, Zhao ZL, Zhang LY, An HM, Li CM. Grow Bimetallic Platinum-Iridium Alloy on Reduced Graphene Oxide to Construct Hetero-Atomic Bridge Catalysis toward Efficient Electrooxidation of Methanol. ChemistrySelect 2017. [DOI: 10.1002/slct.201701379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Zhou
- Institute for Clean Energy & Advanced Materials; Faculty of Materials and Energy, Technologies of Clean Energies; Chongqing 400715, P.R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies; Chongqing 400715, P.R. China
| | - Zhi Liang Zhao
- Institute for Clean Energy & Advanced Materials; Faculty of Materials and Energy, Technologies of Clean Energies; Chongqing 400715, P.R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies; Chongqing 400715, P.R. China
| | - Lian Ying Zhang
- Institute for Clean Energy & Advanced Materials; Faculty of Materials and Energy, Technologies of Clean Energies; Chongqing 400715, P.R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies; Chongqing 400715, P.R. China
| | - Hong Ming An
- Institute for Clean Energy & Advanced Materials; Faculty of Materials and Energy, Technologies of Clean Energies; Chongqing 400715, P.R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies; Chongqing 400715, P.R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials; Faculty of Materials and Energy, Technologies of Clean Energies; Chongqing 400715, P.R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies; Chongqing 400715, P.R. China
- Institute of Materials Science and Devices; Suzhou University of Science and Technology; Suzhou 215011, P.R. China
| |
Collapse
|
25
|
Lin XX, Zhang XF, Wang AJ, Fang KM, Yuan J, Feng JJ. Simple one-pot aqueous synthesis of AuPd alloy nanocrystals/reduced graphene oxide as highly efficient and stable electrocatalyst for oxygen reduction and hydrogen evolution reactions. J Colloid Interface Sci 2017; 499:128-137. [DOI: 10.1016/j.jcis.2017.03.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
26
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Xiong Z, Shiraishi Y, Du Y. Self-Supported Worm-like PdAg Nanoflowers as Efficient Electrocatalysts towards Ethylene Glycol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Bo Yan
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Shumin Li
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Caiqin Wang
- Department of Chemistry University of Toronto; Toronto M5S3H4 Canada
| | - Zhiping Xiong
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| |
Collapse
|
27
|
Jiang LY, Li XS, Wang AJ, Huang H, Feng JJ. l-Arginine-assisted one-pot synthesis of hierarchical Ag 1Pt 2 nanocorallines for surface-enhanced Raman spectroscopy. J Colloid Interface Sci 2017; 498:128-135. [PMID: 28324718 DOI: 10.1016/j.jcis.2017.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
The hierarchical multi-branched Ag1Pt2 nanocorallines (NCs) were prepared in a large scale by a rapid aqueous method, using l-arginine as the eco-friendly shape-directing agent. The product was mainly characterized by microscopy measurements, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The architectures exhibited superior surface-enhanced Raman scattering (SERS) with 4-nitrothiophenol (4-NTP), the enhancement factor (EF) of 1.3×105, a wide linear range of 10-100μM and a low detection limit of 0.01μM. Meanwhile, the SERS-active substrate was explored for the assay of 4-mercaptobenzoic acid (4-MBA) with significantly enhanced SERS performance. It means Ag1Pt2 NCs as a good Raman-active platform for sensing in food and environment analysis, owing to their rough surfaces and unique multi-branched structures.
Collapse
Affiliation(s)
- Liu-Ying Jiang
- College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Sheng Li
- College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
28
|
Lo AY, Chung YC, Hung WH, Hsu YC, Tseng CM, Zhang WL, Wang FK, Lin CY. Pt 20 Ru x Sn y nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Assal ME, Shaik MR, Kuniyil M, Khan M, Al-Warthan A, Siddiqui MRH, Khan SMA, Tremel W, Tahir MN, Adil SF. A highly reduced graphene oxide/ZrOx–MnCO3 or –Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Adv 2017. [DOI: 10.1039/c7ra11569e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZrOx(1%)–MnCO3/HRG(1%) based nanocomposites material as an efficient oxidation catalyst.
Collapse
Affiliation(s)
- Mohamed E. Assal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | | | - Sohail M. A. Khan
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada
| | - Wolfgang Tremel
- Institute of Inorganic and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- Germany
| | - Muhammad Nawaz Tahir
- Institute of Inorganic and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- Germany
- Chemistry Department
- King Fahd University of Petroleum and Materials
| | - Syed Farooq Adil
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Hu LY, Chen LX, Liu MT, Wang AJ, Wu LJ, Feng JJ. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction. J Colloid Interface Sci 2016; 493:94-102. [PMID: 28088571 DOI: 10.1016/j.jcis.2016.12.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity.
Collapse
Affiliation(s)
- Ling-Ya Hu
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Xian Chen
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Meng-Ting Liu
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Lan-Ju Wu
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
31
|
In situ synthesis of PtPd bimetallic nanocatalysts supported on graphene nanosheets for methanol oxidation using triblock copolymer as reducer and stabilizer. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Shao FQ, Lin XX, Feng JJ, Yuan J, Chen JR, Wang AJ. Simple fabrication of core-shell AuPt@Pt nanocrystals supported on reduced graphene oxide for ethylene glycol oxidation and hydrogen evolution reactions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.158] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Ottoni CA, Ramos CED, Gomes da Silva S, Spinacé EV, Brambilla de Souza RF, Neto AO. Glycerol and Methanol Electro-oxidation at Pt/C-ITO under Alkaline Condition. ELECTROANAL 2016. [DOI: 10.1002/elan.201600090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Carlos Eduardo Domingues Ramos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP; Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900 São Paulo, SP Brazil
| | - Sirlane Gomes da Silva
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP; Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900 São Paulo, SP Brazil
| | - Estevan Vitorio Spinacé
- Bioscience Institute; São Paulo State University, Coastal Campus; 11380-972 São Vicente, SP Brazil
| | | | - Almir Oliveira Neto
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP; Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900 São Paulo, SP Brazil
| |
Collapse
|
34
|
Yang Y, Du JJ, Luo LM, Zhang RH, Dai ZX, Zhou XW. Facile Aqueous-Phase Synthesis and Electrochemical Properties of Novel PtPd Hollow Nanocatalysts. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|