1
|
Schrage BR, Zhou W, Harrison LA, Nevonen DE, Thompson JR, Prosser KE, Walsby CJ, Ziegler CJ, Leznoff DB, Nemykin VN. Resolving a Half-Century-Long Controversy between (Magneto)optical and EPR Spectra of Single-Electron-Reduced [PcFe] −, [PcFeL] −, and [PcFeX] 2– Complexes: Story of a Double Flip. Inorg Chem 2022; 61:20177-20199. [DOI: 10.1021/acs.inorgchem.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Briana R. Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Laurel A. Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Dustin E. Nevonen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Kathleen E. Prosser
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
2
|
Liu M, Ma W, Zhou Y, Liu B, Zhang X, Zhang S. A Label-Free Photoelectrochemical Biosensor Based on CRISPR/Cas12a System Responsive Deoxyribonucleic Acid Hydrogel and "Click" Chemistry. ACS Sens 2022; 7:3153-3160. [PMID: 36219232 DOI: 10.1021/acssensors.2c01636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel label-free photoelectrochemical (PEC) biosensor is presented in this work. As a barrier, the DNA hydrogel could block the coupling between g-C3N4 and CdS quantum dots (QDs). Therefore, extremely low photocurrent signals were obtained. The presence of target microRNA-21 can initiate the rolling circle amplification (RCA) reaction, which in turn produces many repeated sequences to activate the CRISPR/Cas12a system. The trans-cleavage activity of the CRISPR/Cas12a system led to the degradation of DNA hydrogels efficiently. As a result, the g-C3N4/CdS QDs heterojunction was formed through "click" chemistry. Through the amplification of the RCA and CRISPR/Cas12a system, the sensitivity of the PEC biosensor was improved significantly with the detection limit of 3.2 aM. The proposed sensor also showed excellent selectivity and could be used to detect actual samples. In addition, the modular design could facilitate the detection of different objects. Thus, the proposed CRISPR/Cas12a system responsive DNA hydrogel provides a simple, sensitive, and flexible way for label-free PEC analysis.
Collapse
Affiliation(s)
- Minghui Liu
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Wenxiao Ma
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Yanmei Zhou
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Bo Liu
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universties of Shandong, Linyi University, Linyi 276000, P.R. China.,College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
3
|
Nevonen DE, Ferch LS, Schrage BR, Nemykin VN. Charge-Transfer Spectroscopy of Bisaxially Coordinated Iron(II) Phthalocyanines through the Prism of the Lever's EL Parameters Scale, MCD Spectroscopy, and TDDFT Calculations. Inorg Chem 2022; 61:8250-8266. [PMID: 35549169 DOI: 10.1021/acs.inorgchem.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The position of the experimentally observed (in the UV-vis and magnetic circular dichroism (MCD) spectra) low-energy metal-to-ligand charge-transfer (MLCT) band in low-spin iron(II) phthalocyanine complexes of general formula PcFeL2, PcFeL'L″, and [PcFeX2]2- (L, L', or L″ are neutral and X- is an anionic axial ligand) was correlated with the Lever's electrochemical EL scale values for the axial ligands. The time-dependent density functional theory (TDDFT)-predicted UV-vis spectra are in very good agreement with the experimental data for all complexes. In the majority of compounds, TDDFT predicts that the first degenerate MLCT band that correlates with the MCD A-term observed between 360 and 480 nm is dominated by an eg (Fe, dπ) → b1u (Pc, π*) single-electron excitation (in traditional D4h point group notation) and agrees well with the previous assignment discussed by Stillman and co-workers[ Inorg. Chem. 1994, 33, 573-583]. The TDDFT calculations also suggest a small energy gap for b1u/b2u (Pc, π*) orbital splitting and closeness of the MLCT1 eg (Fe, dπ) → b1u (Pc, π*) and MLCT2 eg (Fe, dπ) → b2u (Pc, π*) transitions. In the case of the PcFeL2 complexes with phosphines as the axial ligands, additional degenerate charge-transfer transitions were observed between 450 and 500 nm. These transitions are dominated by a2u (Pc + L, π) → eg (Pc, π*) single-electron excitations and are unique for the PcFe(PR3)2 complexes. The energy of the phthalocyanine-based a2u orbital has large axial ligand dependency and is the reason for a large energy deviation for B1 a2u (Pc + L, π) → eg (Pc, π*) transition. The energies of the axial ligand-to-iron, axial ligand-to-phthalocyanine, iron-to-axial ligand, and phthalocyanine-to-axial ligand charge-transfer transitions were discussed on the basis of TDDFT calculations.
Collapse
Affiliation(s)
- Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Briana R Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Nxele SR, Nkhahle R, Nyokong T. The synergistic effects of coupling Au nanoparticles with an alkynyl Co(II) phthalocyanine on the detection of prostate specific antigen. Talanta 2022; 237:122948. [PMID: 34736674 DOI: 10.1016/j.talanta.2021.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Prostate specific antigen (PSA) aptasensors are fabricated using a novel asymmetrically substituted Co phthalocyanine (CoPc), gold nanoparticles (AuNPs) and PSA-specific antigen. The fabricated aptasensors are: GCE-AuNPs-Aptamer, GCE@CoPc-Aptamer and GCE-AuNPs@CoPc-Aptamer (GCE = glassy carbon electrode). The fabricated sensors are characterized at each modification step to monitor the changes occurring at the sensor surface. Concentration studies were carried out using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) to determine detection limits. All the fabricated aptasensors were found to be highly specific and selective but the GCE-AuNPs@CoPc-Aptamer nanoconjugate performed the best. The aptasensors were also tested in spiked serum samples and detection limits, as well as % recoveries were determined. The results obtained showed that the GCE-AuNPs@CoPc-Aptamer has the potential to be used for clinical studies as the results agree with those obtained for detection of PSA in buffer.
Collapse
Affiliation(s)
- Siphesihle Robin Nxele
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Reitumetse Nkhahle
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
5
|
Özdemir M, Köksoy B, Kuruca H, Altındal A, Durmuş M, Koyuncu S, Yalçın B, Bulut M. Synthesis and photovoltaic properties of novel ferrocene-substituted metallophthalocyanines. Dalton Trans 2021; 51:570-579. [PMID: 34904142 DOI: 10.1039/d1dt03104j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a series of new metallophthalocyanines, including ferrocene groups, were designed, synthesized and, characterized, and their photovoltaic properties were investigated as alternative electron-donor materials in bulk heterojunction (BHJ) solar cells. These products were synthesized by a Sonogashira cross-coupling reaction between tetraiodophthalocyanine and ethynyl ferrocene. The newly synthesized phthalocyanines (4-6) were characterized by FT-IR, UV-Vis, 1H NMR, and MALDI-TOF spectroscopic methods and elemental analysis. The electrochemical characterizations were carried out by cyclic voltammetry as well as differential pulse voltammetry. Density functional theory calculations were realized to prove the charge separation between ferrocene as an electron-donor and the phthalocyanine ring as an acceptor. According to UV-Vis measurements, a 25 nm red-shift was observed for complex 4 compared with complexes 5 and 6. Finally, the photovoltaic performance of these compounds used as an electron-donor moiety in a BHJ device were investigated. A function of different blend ratios was tested by fabricating a series of BHJ devices with the architecture of FTO/PEDOT:PSS/4-6: PCBM blend/Ag with an identical thickness of the active layer. The results indicated that the photovoltaic conversion efficiency of BHJ devices exhibited a strong blend-ratio dependence. The maximum power conversion efficiency was obtained by 5-based devices, as 3.65%, with a blend ratio of 1.5 : 1.0 under standard AM 1.5 illumination.
Collapse
Affiliation(s)
- Mücahit Özdemir
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkey.
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, 16310 Bursa, Turkey.
| | - Halid Kuruca
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkey.
| | - Ahmet Altındal
- Yildiz Technical University, Department of Physics, 34220 Istanbul, Turkey.
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, 41400 Kocaeli, Turkey.
| | - Sermet Koyuncu
- Canakkale Onsekiz Mart University, Department of Chemical Engineering, 17100 Canakkale, Turkey.
| | - Bahattin Yalçın
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkey.
| | - Mustafa Bulut
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkey.
| |
Collapse
|
6
|
Nemykin VN, Nevonen DE, Osterloh WR, Ferch LS, Harrison LA, Marx BS, Kadish KM. Application of Lever's EL Parameter Scale toward Fe(II)/Fe(III) versus Pc(2-)/Pc(1-) Oxidation Process Crossover Point in Axially Coordinated Iron(II) Phthalocyanine Complexes. Inorg Chem 2021; 60:16626-16644. [PMID: 34644056 DOI: 10.1021/acs.inorgchem.1c02520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures and, particularly, the nature of the HOMO in a series of PcFeL2, PcFeL'L″, and [PcFeX2]2- complexes (Pc = phthalocyaninato(2-) ligand; L = NH3, n-BuNH2, imidazole (Im), pyridine (Py), PMe3, PBu3, t-BuNC, P(OBu)3, and DMSO; L' = CO; L″ = NH3 or n-BuNH2; X = NCO-, NCS-, CN-, imidazolate (Im-), or 1,2,4-triazolate(Tz-)) were probed by electrochemical, spectroelectrochemical, and chemical oxidation as well as theoretical (density functional theory, DFT) studies. In general, energies of the metal-centered occupied orbitals in various six-coordinate iron phthalocyanine complexes correlate well with Lever Electrochemical Parameter EL and intercross the phthalocyanine-centered a1u orbital in several compounds with moderate-to-strong π-accepting axial ligands. In these cases, an oxidation of the phthalocyanine macrocycle (Pc(2-)/Pc(1-)) rather than the central metal ion (Fe(II)/Fe(III)) was theoretically predicted and experimentally confirmed.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laurel A Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin S Marx
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Kalra P, Kaur R, Singh G, Singh H, Singh G, Pawan, Kaur G, Singh J. Metals as “Click” catalysts for alkyne-azide cycloaddition reactions: An overview. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Nemykin VN, Nevonen DE, Ferch LS, Shepit M, Herbert DE, van Lierop J. Accurate Prediction of Mössbauer Hyperfine Parameters in Bis-Axially Coordinated Iron(II) Phthalocyanines Using Density Functional Theory Calculations: A Story of a Single Orbital Revealed by Natural Bond Orbital Analysis. Inorg Chem 2021; 60:3690-3706. [PMID: 33651595 DOI: 10.1021/acs.inorgchem.0c03373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Shepit
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Özgür Yalçın C, Baş H, Barut B, Özel A, Biyiklioglu Z. Synthesis of axially disubstituted quaternized silicon phthalocyanines as a promising photosensitizer for the photodynamic treatment of HCT-116, A549 and SH-SY5Y cancer cell lines. Dalton Trans 2020; 49:4927-4934. [PMID: 32232308 DOI: 10.1039/d0dt00244e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, novel silicon(iv) phthalocyanines axially disubstituted with bis[(4-{3-[3-(dimethylamino)phenoxy]propoxy}phenyl)methoxy] and bis[(4-{3-[3-(diethylamino)phenoxy]propoxy}phenyl)methoxy] groups and their quaternized derivatives were synthesized and characterized. Then, their supercoiled pBR322 plasmid DNA cleavage properties were investigated using agarose gel electrophoresis. The in vitro PDT effects of Si-3a and Si-4a were investigated using the MTT cell viability assay against HCT-116, A549 and SH-SY5Y cell lines. Si-3a and Si-4a did not show cleavage effects upon increasing concentrations in the dark but both compounds showed cleavage activities upon irradiation for 30 and 60 min, respectively. The MTT cell viability assay indicated that Si-4a had a cytotoxic effect in a concentration-dependent manner on the HCT-116 cell line but it did not show any statistical difference with regard to phototoxicity. Otherwise, Si-3a and Si-4a had significant phototoxic effects when compared to cytotoxic effects against A549 and SH-SY5Y. The results suggested that Si-3a and Si-4a showed better cell death against SH-SY5Y than other cell lines with irradiation.
Collapse
Affiliation(s)
- Can Özgür Yalçın
- Karadeniz Technical University, Faculty of Pharmacy, Department of Toxicology, 61080, Trabzon, Turkey and Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Turkey
| | - Hüseyin Baş
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey.
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Turkey
| | - Arzu Özel
- Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Turkey and Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Turkey
| | - Zekeriya Biyiklioglu
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey.
| |
Collapse
|
10
|
Nyokong T. A career in photophysicochemical and electrochemical properties of phthalocyanine — a Linstead Career Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This manuscript highlights the author’s contributions to phthalocyanine chemistry, especially the applications based on their electrochemistry and photophysicochemistry. In particular, the use of phthalocyanines as electrocatalysts and photocatalysts is presented. For photocatalysis, photodynamic antimicrobial chemotherapy and pollution control using green technologies are highlighted. For electrocatalysis the phthalocyanines are employed for the detection of pollutants and environmentally important molecules. Phthalocyanines are combined with nanomaterials for improved photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Tebello Nyokong
- Institute for Nanotechnology Innovation, Department Chemistry, Rhodes University, P. O. Box 94, Makhanda, South Africa
| |
Collapse
|
11
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Nonlinear optical response and electrocatalytic activity of cobalt phthalocyanine clicked zinc oxide nanoparticles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Araújo ARL, Tomé AC, Santos CIM, Faustino MAF, Neves MGPMS, Simões MMQ, Moura NMM, Abu-Orabi ST, Cavaleiro JAS. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 2-Azides, Phthalocyanines, Subphthalocyanines and Porphyrazines. Molecules 2020; 25:molecules25071745. [PMID: 32290240 PMCID: PMC7180445 DOI: 10.3390/molecules25071745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The reaction between organic azides and alkyne derivatives via the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) is an efficient strategy to combine phthalocyanines and analogues with different materials. As examples of such materials, it can be considered the following ones: graphene oxide, carbon nanotubes, silica nanoparticles, gold nanoparticles, and quantum dots. This approach is also being relevant to conjugate phthalocyanines with carbohydrates and to obtain new sophisticated molecules; in such way, new systems with significant potential applications become available. This review highlights recent developments on the synthesis of phthalocyanine, subphthalocyanine, and porphyrazine derivatives where CuAAC reactions are the key synthetic step.
Collapse
Affiliation(s)
- Ana R. L. Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Carla I. M. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- CQE, Centro de Química Estrutural and IN—Institute of Nanoscience and Nanotechnology of Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Mário M. Q. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| |
Collapse
|
14
|
Zhao Q, Li SH, Chai RL, Ren X, Zhang C. Two-Dimensional Conductive Metal-Organic Frameworks Based on Truxene. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7504-7509. [PMID: 31965783 DOI: 10.1021/acsami.9b23416] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two dimensional conductive metal-organic frameworks (2D cMOFs) have been widely applied as electrocatalysts, electronic devices, and sensors. In addition, their intrinsic electronic properties could be efficiently tuned via varying the conjugated linkers. Herein, we report a novel 2D cMOF based on complexation of 2,3,7,8,12,13-hexahydroxyl truxene and copper ions via the energy economical interfacial reaction. This 2D cMOF was obtained as a brilliant black powder and showed a bulk electrical conductivity of 3.5 × 10-3 S cm-1 at 30 °C. Additionally, the cMOF-modified glassy carbon electrode could act as an electrochemical sensor for sensing paraquat with a limit of detection at 4.1 × 10-8 M (S/N = 3). The accession of truxene-Cu to the cMOF family would shed new light on the impact of the organic conjugated linker and broaden the scope of cMOFs' applications.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Molecular Plus , Tianjin University , Weijin Rd. 92 , Tianjin 300072 , P. R. China
| | - Sheng-Hua Li
- College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , Tianjin 300457 , P. R. China
| | - Rui-Lin Chai
- College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , Tianjin 300457 , P. R. China
| | - Xv Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Weijin Rd. 92 , Tianjin 300072 , P. R. China
| | - Chun Zhang
- Institute of Molecular Plus , Tianjin University , Weijin Rd. 92 , Tianjin 300072 , P. R. China
| |
Collapse
|
15
|
Yalazan H, Barut B, Ertem B, Yalçın CÖ, Ünver Y, Özel A, Ömeroğlu İ, Durmuş M, Kantekin H. DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Mpeta LS, Nyokong T. Enhanced electrocatalytic activity of cobalt phthalocyanines when “clicked” to graphene oxide nanosheets. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alkyne-terminated Co phthalocyanine (CoPc) derivatives are linked to reduced graphene oxide nanosheets (GONS) via click chemistry and the conjugates are used for the electrocatalytic oxidation of 2-mercaptoethanol. CoPc derivatives where the alkyne group is separated from the Pc ring by an aliphatic and benzene ring (complex 3) showed the best catalytic activity (in terms of oxidation potential) in comparison to when only aliphatic chains were employed without the benzene ring (complex 2) and when there were no substituents (complex 1). The anodic oxidation of 2-mercaptoethanol on 3-GONS (linked) occurred at the least positive oxidation potential (-0.22 V vs. Ag|AgCl). 3-GONS (linked) was found to have the highest sensitivity with the lowest limit of detection of 0.08 [Formula: see text]M. When the CoPc derivative and GONS were not linked but placed sequentially on the electrode, the electrocatalytic activity (in terms of LOD) was poorer than when linked. The electrodes modified with CoPc clicked to GONS are highly promising electrochemical sensors in terms of stability, sensitivity, good catalytic activity and ease of fabrication.
Collapse
Affiliation(s)
- Lekhetho S. Mpeta
- Department of Chemistry, P.O. 94, Rhodes University, Grahamstown, South Africa
| | - Tebello Nyokong
- Department of Chemistry, P.O. 94, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
17
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Copper(I)-Catalyzed Click Chemistry as a Tool for the Functionalization of Nanomaterials and the Preparation of Electrochemical (Bio)Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2379. [PMID: 31137612 PMCID: PMC6566994 DOI: 10.3390/s19102379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/30/2023]
Abstract
Proper functionalization of electrode surfaces and/or nanomaterials plays a crucial role in the preparation of electrochemical (bio)sensors and their resulting performance. In this context, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been demonstrated to be a powerful strategy due to the high yields achieved, absence of by-products and moderate conditions required both in aqueous medium and under physiological conditions. This particular chemistry offers great potential to functionalize a wide variety of electrode surfaces, nanomaterials, metallophthalocyanines (MPcs) and polymers, thus providing electrochemical platforms with improved electrocatalytic ability and allowing the stable, reproducible and functional integration of a wide range of nanomaterials and/or different biomolecules (enzymes, antibodies, nucleic acids and peptides). Considering the rapid progress in the field, and the potential of this technology, this review paper outlines the unique features imparted by this particular reaction in the development of electrochemical sensors through the discussion of representative examples of the methods mainly reported over the last five years. Special attention has been paid to electrochemical (bio)sensors prepared using nanomaterials and applied to the determination of relevant analytes at different molecular levels. Current challenges and future directions in this field are also briefly pointed out.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - S Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Electrocatalytic activity of ethynylbenzyl phthalocyanines when linked to quantum dots via click chemistry: Towards efficient oxygen reduction reaction and H2O2 oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Centane S, Sekhosana EK, Matshitse R, Nyokong T. Electrocatalytic activity of a push-pull phthalocyanine in the presence of reduced and amino functionalized graphene quantum dots towards the electrooxidation of hydrazine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Mpeta LS, Fomo G, Nyokong T. Click chemistry electrode modification using 4-ethynylbenzyl substituted cobalt phthalocyanine for applications in electrocatalysis. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1466118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lekhetho S. Mpeta
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Gertrude Fomo
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
21
|
Low symmetric metallophthalocyanine modified electrode via click chemistry for simultaneous detection of heavy metals. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Öztaş B, Akyüz D, Koca A. Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction. Phys Chem Chem Phys 2017; 19:26121-26131. [DOI: 10.1039/c7cp04354f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modified electrodes (ITO/PANI-N3-MnPc and GCE/PANI-N3-MnPc) were constructed by click electrochemistry (CEC). The GCE/PANI-N3-MnPc electrode was tested as a potential electrocatalyst for water splitting reaction.
Collapse
Affiliation(s)
- B. Öztaş
- İstanbul Technical University
- Faculty of Science and Letters
- Department of Chemistry
- 34469 Maslak
- Turkey
| | - D. Akyüz
- Department of Chemical Engineering
- Engineering Faculty
- Marmara University
- Istanbul
- Turkey
| | - A. Koca
- Department of Chemical Engineering
- Engineering Faculty
- Marmara University
- Istanbul
- Turkey
| |
Collapse
|
23
|
O'Donoghue CSJN, Fomo G, Nyokong T. Electrode Modification Using Alkyne Manganese Phthalocyanine and Click Chemistry for Electrocatalysis. ELECTROANAL 2016. [DOI: 10.1002/elan.201600379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Gertrude Fomo
- Department of Chemistry; Rhodes University; Grahamstown 6140 South Africa
| | - Tebello Nyokong
- Department of Chemistry; Rhodes University; Grahamstown 6140 South Africa
| |
Collapse
|