1
|
Wibowo RE, Garcia-Diez R, Bystron T, van der Merwe M, Prokop M, Arce MD, Efimenko A, Steigert A, Bernauer M, Wilks RG, Bouzek K, Bär M. Elucidating the Complex Oxidation Behavior of Aqueous H 3PO 3 on Pt Electrodes via In Situ Tender X-ray Absorption Near-Edge Structure Spectroscopy at the P K-Edge. J Am Chem Soc 2024; 146:7386-7399. [PMID: 38459944 PMCID: PMC10958492 DOI: 10.1021/jacs.3c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
In situ tender X-ray absorption near-edge structure (XANES) spectroscopy at the P K-edge was utilized to investigate the oxidation mechanism of aqueous H3PO3 on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous H3PO3 via H2O yielding H3PO4 and H2. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous H3PO3 oxidation mechanism. In situ XANES studies of aqueous 5 mol dm-3 H3PO3 on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous H3PO3 to H3PO4. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with H2O, as further supported by XANES measurements of aqueous H3PO3 of different concentrations, showing a more pronounced oxidation in electrolytes with a higher H2O content. The significant role of water in the oxidation of H3PO3 to H3PO4 supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by H3PO3 during HT-PEMFC operation.
Collapse
Affiliation(s)
- Romualdus Enggar Wibowo
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Raul Garcia-Diez
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marianne van der Merwe
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Martin Prokop
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Mauricio D. Arce
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Departamento
Caracterización de Materiales, INN-CNEA-CONICET, Centro Atómico Bariloche, Avenida Bustillo 9500, S. C. de Bariloche, Rio Negro 8400, Argentina
| | - Anna Efimenko
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
| | - Alexander Steigert
- Institute
of Nanospectroscopy, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Milan Bernauer
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Regan G. Wilks
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
| | - Karel Bouzek
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marcus Bär
- Department
of Interface Design, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
(HZB), Albert-Einstein
Straße 15, 12489 Berlin, Germany
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Department
of X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
(HI ERN), Albert-Einstein-Straße
15, 12489 Berlin, Germany
| |
Collapse
|
2
|
Wibowo RE, Garcia-Diez R, Bystron T, Prokop M, van der Merwe M, Arce MD, Jiménez CE, Hsieh TE, Frisch J, Steigert A, Favaro M, Starr DE, Wilks RG, Bouzek K, Bär M. Oxidation of Aqueous Phosphorous Acid Electrolyte in Contact with Pt Studied by X-ray Photoemission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51989-51999. [PMID: 37890003 PMCID: PMC10636727 DOI: 10.1021/acsami.3c12557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The oxidation of the aqueous H3PO3 in contact with Pt was investigated for a fundamental understanding of the Pt/aqueous H3PO3 interaction with the goal of providing a comprehensive basis for the further optimization of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Ion-exchange chromatography (IEC) experiments suggested that in ambient conditions, Pt catalyzes H3PO3 oxidation to H3PO4 with H2O. X-ray photoelectron spectroscopy (XPS) on different substrates, including Au and Pt, previously treated in H3PO3 solutions was conducted to determine the catalytic abilities of selected metals toward H3PO3 oxidation. In situ ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES) combined with the "dip-and-pull" method was performed to investigate the state of H3PO3 at the Pt|H3PO3 interface and in the bulk solution. It was shown that whereas H3PO3 remains stable in the bulk solution, the catalyzed oxidation of H3PO3 by H2O to H3PO4 accompanied by H2 generation occurs in contact with the Pt surface. This catalytic process likely involves H3PO3 adsorption at the Pt surface in a highly reactive pyramidal tautomeric configuration.
Collapse
Affiliation(s)
- Romualdus Enggar Wibowo
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Raul Garcia-Diez
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Martin Prokop
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marianne van der Merwe
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Mauricio D. Arce
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Departamento
Caracterización de Materiales, INN-CNEA-CONICET,
Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche, Rio
Negro 8400, Argentina
| | - Catalina E. Jiménez
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Tzung-En Hsieh
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Johannes Frisch
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
| | - Alexander Steigert
- Institute
for Nanospectroscopy, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489Berlin,Germany
| | - Marco Favaro
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - David E. Starr
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - Regan G. Wilks
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
| | - Karel Bouzek
- Department
of Inorganic Technology, University of Chemistry
and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marcus Bär
- Dept.
Interface Design, Helmholtz-Zentrum Berlin
(HZB) für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str.
15, 12489 Berlin, Germany
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany
- Department
of X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
(HI ERN), Albert-Einstein-Str.
15, 12489 Berlin, Germany
| |
Collapse
|
3
|
Peroxydisulfate production in situ by blue titania nanotube array electrode for tetracycline degradation in groundwater: Performance and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
4
|
Gomes BF, Prokop M, Bystron T, Loukrakpam R, Melke J, Lobo CMS, Fink M, Zhu M, Voloshina E, Kutter M, Hoffmann H, Yusenko KV, Buzanich AG, Röder B, Bouzek K, Paulus B, Roth C. Following Adsorbed Intermediates on a Platinum Gas Diffusion Electrode in H 3PO 3-Containing Electrolytes Using In Situ X-ray Absorption Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruna F. Gomes
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Martin Prokop
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Tomas Bystron
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Rameshwori Loukrakpam
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Julia Melke
- Department for Applied Electrochemistry, Fraunhofer Institute for Chemical Technology (ICT), Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, Freiburg 79104, Germany
| | - Carlos M. S. Lobo
- Institute for Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Michael Fink
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Mengshu Zhu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Elena Voloshina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Maximilian Kutter
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Hendrik Hoffmann
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| | - Kirill V. Yusenko
- Federal Institute for Materials Research and Testing BAM, Richard-Willstätter Str. 11, Berlin D-12489, Germany
| | - Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing BAM, Richard-Willstätter Str. 11, Berlin D-12489, Germany
| | - Bettina Röder
- Federal Institute for Materials Research and Testing BAM, Richard-Willstätter Str. 11, Berlin D-12489, Germany
| | - Karel Bouzek
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Christina Roth
- Chair of Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany
| |
Collapse
|
5
|
Gomes BF, Prokop M, Bystron T, Loukrakpam R, Lobo CM, Kutter M, Günther TE, Fink M, Bouzek K, Roth C. Effect of phosphoric acid purity on the electrochemically active surface area of Pt-based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
6
|
Nycz JE. The Synthesis of Hypodiphosphoric Acid and Derivatives with P-P Bond, including Esters and Diphosphine Dioxides: A Review. Molecules 2021; 26:molecules26237286. [PMID: 34885870 PMCID: PMC8659023 DOI: 10.3390/molecules26237286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of hypodiphosphoric acid and its related compounds began in 1877, but no summary of the synthetic efforts has been reported. This review includes published papers related to the molecules containing the >P(=O)-P(=O)< fragment, which notably resembles the structure of the >P(=O)-O-P(=O)< moiety, the essential building block of many important molecules found in nature and in the field of medicinal chemistry. This review covers the strategies related to the synthesis of hypodiphosphoric acid (former name hypophosphoric acid), its ester form, and diphosphine dioxides. Finally, some properties and applications of these structures studied during this period are presented.
Collapse
Affiliation(s)
- Jacek E Nycz
- Faculty of Science and Technology, Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, PL-40007 Katowice, Poland
| |
Collapse
|
7
|
Prokop M, Bystron T, Belsky P, Tucek O, Kodym R, Paidar M, Bouzek K. Degradation kinetics of Pt during high-temperature PEM fuel cell operation Part III: Voltage-dependent Pt degradation rate in single-cell experiments. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
8
|
Prokop M, Kodym R, Bystron T, Drakselova M, Paidar M, Bouzek K. Degradation kinetics of Pt during high-temperature PEM fuel cell operation part II: Dissolution kinetics of Pt incorporated in a catalyst layer of a gas-diffusion electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
9
|
Degradation kinetics of Pt during high-temperature PEM fuel cell operation part I: Kinetics of Pt surface oxidation and dissolution in concentrated H3PO4 electrolyte at elevated temperatures. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
10
|
Prokop M, Carda M, Bystron T, Paidar M, Bouzek K. A rotating rod electrode disk as an alternative to the rotating disk electrode for medium-temperature electrolytes, Part II: An example of the application in an investigation of the oxygen reduction reaction on a Pt/C catalyst by the thin film method in hot concentrated H3PO4. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|