1
|
Veloso WB, Meloni GN, Arantes IVS, Pradela-Filho LA, Muñoz RAA, Paixão TRLC. Gold film deposition by infrared laser photothermal treatment on 3D-printed electrodes: electrochemical performance enhancement and application. Analyst 2024; 149:3900-3909. [PMID: 38912921 DOI: 10.1039/d4an00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Luo Y, Shupletsov L, Ortega Vega MR, Gutiérrez-Serpa A, Khan AH, Brunner E, Senkovska I, Kaskel S. Integration of Triphenylene-Based Conductive Metal-Organic Frameworks into Carbon Nanotube Electrodes for Boosting Nonenzymatic Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903405 DOI: 10.1021/acsami.3c11810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 μM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 μA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.
Collapse
Affiliation(s)
- Yutong Luo
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Maria Rita Ortega Vega
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Adrián Gutiérrez-Serpa
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| |
Collapse
|
3
|
Kaur A, Lavisha, Chaudhary GR, Prabhakar N. MC-Au/MSS-Z8 porous network assisted advanced electrochemical immunosensing of 25-hydroxyvitamin D 3. Talanta 2023; 257:124376. [PMID: 36821967 DOI: 10.1016/j.talanta.2023.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
On-site monitoring of vitamin D levels is subject matter of immediate attention owing to the serious aftermath of its long standing deficiency. Therefore, a novel and efficient voltammetric immunosensing of 25-hydroxyvitamin D3 (25(OH)VD3) has been experimented based on an advanced sensing platform composed of meso-microporous silica-zeolitic imidazolate framework-8 (MSS-Z8) with highly enhanced surface area (SBET, MSS-Z8 (643.4 m2g-1) > SBET, MSS (49.95 m2g-1)), embedded with gold particles (mass loading of 82 μg), particularly of microcubic morphology (MC-Au). Further, the MC-Au/MSS-Z8/FTO platform was fashioned with antibody specific to 25(OH)VD3 via interaction between Au and abundant -SH groups present on the antibody surface. After optimization of operational parameters, the Ab/MC-Au/MSS-Z8/FTO immunosensor was employed for the determination of 25(OH)VD3 within 0.01-106 pg mL-1 concentration range through differential pulse voltammetry technique in [Fe(CN)6]3-/4-. Thus, 0.01 pg mL-1 concentration of 25(OH)VD3 was the experimental limit of detection of the immunosensor. Further, upon examination of various analytical parameters, it turns out that the immunosensor exhibited low theoretical LOD (0.23 pg mL-1) and LOQ (0.76 pg mL-1), wide linear range (0.01-106 pg mL-1), ultra-sensitivity (143.9 μA [log (pg mL-1)]-1 cm-2), adequate reproducibility (RSD ≤1.23%) and acceptable shelf life. Most importantly, the immunosensor presented proficient performance with spiked human serum samples (Recovery = 97.20-100.7%, RSD value < 5.6%), evincing the adequacy of present biosensing approach.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Lavisha
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; SAIF/CIL, Panjab University, Chandigarh, 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Evaluation of an electrochemical sensor based on gold nanoparticles supported on carbon nanofibers for detection of tartrazine dye. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Zhang W, Zhu X, Kang M, Xu J, Zuo Y, Sun M, Zhao C, Liu H. Water splitting-assisted electrocatalysis based on dendrimer-encapsulated Au nanoparticles for perspiration glucose analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Peruffo N, Parolin G, Collini E, Corni S, Mancin F. Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation. NANOMATERIALS 2022; 12:nano12071180. [PMID: 35407298 PMCID: PMC9000468 DOI: 10.3390/nano12071180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022]
Abstract
The ability to control the light–matter interaction in nanosystems is a major challenge in the field of innovative photonics applications. In this framework, plexcitons are promising hybrid light–matter states arising from the strong coupling between plasmonic and excitonic materials. However, strategies to precisely control the formation of plexcitons and to modulate the coupling between the plasmonic and molecular moieties are still poorly explored. In this work, the attention is focused on suspensions of hybrid nanosystems prepared by coupling cationic gold nanoparticles to tetraphenyl porphyrins in different aggregation states. The role of crucial parameters such as the dimension of nanoparticles, the pH of the solution, and the ratio between the nanoparticles and dye concentration was systematically investigated. A variety of structures and coupling regimes were obtained. The rationalization of the results allowed for the suggestion of important guidelines towards the control of plexcitonic systems.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (N.P.); (G.P.)
| | - Giovanni Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (N.P.); (G.P.)
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (N.P.); (G.P.)
- Padua Quantum Technologies Research Center, Via Gradenigo 6, 35131 Padova, Italy
- Correspondence: (E.C.); (S.C.); (F.M.)
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (N.P.); (G.P.)
- Correspondence: (E.C.); (S.C.); (F.M.)
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (N.P.); (G.P.)
- Correspondence: (E.C.); (S.C.); (F.M.)
| |
Collapse
|
7
|
Brazaca LC, Imamura AH, Gomes NO, Almeida MB, Scheidt DT, Raymundo-Pereira PA, Oliveira ON, Janegitz BC, Machado SAS, Carrilho E. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal Bioanal Chem 2022; 414:5507-5517. [PMID: 35169906 PMCID: PMC8853172 DOI: 10.1007/s00216-022-03956-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
This paper reports the development of a low-cost (< US$ 0.03 per device) immunosensor based on gold-modified screen-printed carbon electrodes (SPCEs). As a proof of concept, the immunosensor was tested for a fast and sensitive determination of S proteins from both SARS-CoV and SARS-CoV-2, by a single disposable device. Gold nanoparticles were electrochemically deposited via direct reduction of gold ions on the electrode using amperometry. Capture antibodies from spike (S) protein were covalently immobilized on carboxylic groups of self-assembled monolayers (SAM) of mercaptoacetic acid (MAA) attached to the gold nanoparticles. Label-free detection of S proteins from both SARS-CoV and SARS-CoV-2 was performed with electrochemical impedance spectroscopy (EIS). The immunosensor fabricated with 9 s gold deposition had a high performance in terms of selectivity, sensitivity, and low limit of detection (LOD) (3.16 pmol L-1), thus permitting the direct determination of the target proteins in spiked saliva samples. The complete analysis can be carried out within 35 min using a simple one-step assay protocol with small sample volumes (10 µL). With such features, the immunoplatform presented here can be deployed for mass testing in point-of-care settings.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Nathalia Oezau Gomes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Desirée Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | | | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
8
|
Li H, Jiang L, Shao D, Wu C, Gao Y, Yang Z, Yang Z. Facile synthesis of Cu@Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Zhu R, Zhao Z, Cao J, Li H, Ma L, Zhou K, Yu Z, Wei Q. Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Golsanamlou Z, Mahmoudpour M, Soleymani J, Jouyban A. Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device. Crit Rev Anal Chem 2021; 53:1116-1131. [PMID: 34894901 DOI: 10.1080/10408347.2021.2008227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Diabetes mellitus (DM) is a global health problem leading to many complications and disabilities in life adjusting activities and even dead. Monitoring glucose levels is a key factor in diagnosis and management of DM. Conventional glucose sensors consisted of immobilized enzymes, are so susceptible to environmental conditions. In this way, nonenzymatic biosensors have attracted extensive attentions in many clinical diagnostics applications. To date, the finger pricking test is a common enzyme-based glucometer that is an invasive and inconvenient and may lead to infections in the injection sites. So, working on the possibility of cutaneous or subcutaneous insertion of devices as a noninvasive or minimally-invasive systems for continuous glucose controlling approaches through human biofluids (blood, perspiration, tears, saliva, etc.) have stimulated growing interest. This review summarizes recent nonenzymatic and noninvasive biofluids glucose monitoring systems which are highly resilience and stretchable to continuously adapt to body movements during common physical activity. Sensors are based on their constituent materials including carbon-based, metal nanoparticles, polymer, and hydrogel systems are classified for electrochemical, and optical glucose detection. Finally, we address the drawbacks and challenges of enzyme-free sensors which are aroused sustaining research passion to be used in point-of-care medical diagnostics applications.
Collapse
Affiliation(s)
- Zahra Golsanamlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Nicosia, Turkey
| |
Collapse
|
11
|
Olejnik A, Karczewski J, Dołęga A, Siuzdak K, Cenian A, Grochowska K. Simple synthesis route for fabrication of protective photo-crosslinked poly(zwitterionic) membranes for application in non-enzymatic glucose sensing. J Biomed Mater Res B Appl Biomater 2021; 110:679-690. [PMID: 34592065 DOI: 10.1002/jbm.b.34946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
This work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion, photo-crosslinked poly(zwitterions) based on sulfobetaine methacrylate, and a hybrid membrane consisting of both polymers. Both the optimal integrity of the material and its catalytic activity toward glucose oxidation were maintained by the hybrid membranes with a large excess of poly(zwitterions) (mass ratio 20:1). The chemical structures of the as-formed membranes are confirmed by Fourier transform infrared spectroscopy. Due to the zwitterionic nature of the coating, the electrodes are resistant to biofouling and maintain electrochemical activity toward glucose for 4 days. Moreover, due to the synergistic effect of both Nafion and poly(zwitterions), the interference from the two compounds, namely, from acetylsalicylic acid and acetaminophen, was diminished. Besides the presence of polymer membranes, the electrode possesses a sensitivity of 36.8 μA cm-2 mM-1 in the linear range of 0.4-12 mM, while the limit of detection was estimated to be 23 μM. Finally, the electrodes are stable, and their response is not altered even by 1,000 bending cycles.
Collapse
Affiliation(s)
- Adrian Olejnik
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland.,Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| | - Adam Cenian
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
12
|
Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J. Electrocatalysis of gold-based nanoparticles and nanoclusters. MATERIALS HORIZONS 2021; 8:1657-1682. [PMID: 34846497 DOI: 10.1039/d0mh01947j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold (Au)-based nanomaterials, including nanoparticles (NPs) and nanoclusters (NCs), have shown great potential in many electrocatalytic reactions due to their excellent catalytic ability and selectivity. In recent years, Au-based nanostructured materials have been considered as one of the most promising non-platinum (Pt) electrocatalysts. The controlled synthesis of Au-based NPs and NCs and the delicate microstructure adjustment play a vital role in regulating their catalytic activity toward various reactions. This review focuses on the latest progress in the synthesis of efficient Au-based NP and NC electrocatalysts, highlighting the relationship between Au nanostructures and their catalytic activity. This review first discusses the parameters of Au-based nanomaterials that determine their electrocatalytic performance, including composition, particle size and architecture. Subsequently, the latest electrocatalytic applications of Au-based NPs and NCs in various reactions are provided. Finally, some challenges and opportunities are highlighted, which will guide the rational design of Au-based NPs and NCs as promising electrocatalysts.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hovancová J, Niščáková V, Šišoláková I, Oriňaková R, Maskaľová I, Oriňak A, Kovaľ K. Gold Microelectrodes Decorated by Spike‐Like Nanostructures as a Promising Non‐Enzymatic Glucose Sensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jana Hovancová
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Veronika Niščáková
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Ivana Šišoláková
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Renáta Oriňaková
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Iveta Maskaľová
- Department of Nutrition, Dietetics, and Animal Breeding University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovakia
| | - Andrej Oriňak
- Department of Physical Chemistry University of P.J. Šafárik in Košice Moyzesova 11 040 01 Košice Slovakia
| | - Karol Kovaľ
- Institute of Materials Research Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
| |
Collapse
|
14
|
Yan W, Zhang D, Sun Y, Zhou Z, Du Y, Du Y, Li Y, Liu M, Zhang Y, Shen J, Jin X. Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63590-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Lim K, Macazo FC, Scholes C, Chen H, Sumampong K, Minteer SD. Elucidating the Mechanism behind the Bionanomanufacturing of Gold Nanoparticles Using Bacillus subtilis. ACS APPLIED BIO MATERIALS 2020; 3:3859-3867. [DOI: 10.1021/acsabm.0c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Florika C. Macazo
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Connor Scholes
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Kirsten Sumampong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| |
Collapse
|
16
|
Rodio M, Graf M, Schulz F, Mueller NS, Eich M, Lange H. Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marina Rodio
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Matthias Graf
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Florian Schulz
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Niclas S. Mueller
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Manfred Eich
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Holger Lange
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| |
Collapse
|
17
|
Cu(I) Coordination Complex Precursor for Randomized CuO x Microarray Loaded on Carbon Nanofiber with Excellent Electrocatalytic Performance for Electrochemical Glucose Detection. SENSORS 2019; 19:s19245353. [PMID: 31817245 PMCID: PMC6960723 DOI: 10.3390/s19245353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022]
Abstract
A homoleptic ionic Cu(I) coordination complex that was based on 2,2′-biquinoline ligand functionalized with long alkyl chains (Cu(I)–C18) was used as a precursor to modify a carbon nanofiber paste electrode (Cu–C18/CNF). Randomized copper oxide microelectrode arrays dispersed within carbon nanofiber paste (CuOx/CNF) were obtained by electrochemical treatment of Cu–C18/CNF while using cyclic voltammetry (CV). The CuOx/CNF exhibited high electrocatalytic activity towards glucose oxidation at +0.6 V and +1.2 V vs. Ag/AgCl. Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM) characterized the electrodes composition. Cyclic voltammetry (CV), square wave-voltammetry (SWV), and multiple-pulsed amperometry (MPA) techniques provided optimized conditions for glucose oxidation and detection. A preconcentration step that involved 10 minutes accumulation at open circuit potential before SWV running led to the lowest limit of detection and the highest sensitivity for glucose detection (5419.77 µA·mM−1·cm−2 at + 1.1 V vs. Ag/AgCl) vs. Cu-based electrodes reported to date in literature.
Collapse
|
18
|
Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA, Laurent S, Hooshmand N, El-Sayed MA. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj 2019; 1864:129435. [PMID: 31526869 DOI: 10.1016/j.bbagen.2019.129435] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8 B-6041 Gosselies, Belgium
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
19
|
Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00543-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1611-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide. Mikrochim Acta 2019; 186:235. [PMID: 30868243 DOI: 10.1007/s00604-019-3272-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
Gold nanobipyramids were synthesized by a seed-mediated growth method and then supported by multi-walled carbon nanotubes (denoted as AuNBP/MWCNTs). The electrocatalytic activity of the AuNBP/MWCNTs on a glassy carbon electrode (GCE) towards direct glucose oxidation and hydrogen peroxide reduction was superior to that of AuNBPs and MWCNTs. The modified GCE, operated at a typical working voltage of +0.15 V (vs. SCE) and in 0.1 M NaOH solution, exhibits a linear response in the 10 μM to 36.7 mM glucose concentration range with a 3.0 μM detection limit (at S/N = 3) and a sensitivity of 101.2 μA mM-1 cm-2. It also demonstrates good sensitivity towards hydrogen peroxide in at pH 7 solution at a working potential of -0.50 V (vs. SCE), with a linear response range from 5.0 μM to 47.3 mM, a sensitivity of 170.6 μA mM-1 cm-2 and a detection limit of 1.5 μM. Graphical abstract A electrochemical sensing platform based on the use of gold nanobipyramids and multi-walled carbon nanotubes nanocomposites (AuNBP/MWCNTs) is described for the determination of glucose and hydrogen peroxide.
Collapse
|
22
|
Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z, Yang Z. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Mikrochim Acta 2019; 186:192. [DOI: 10.1007/s00604-019-3263-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
23
|
A novel nanocomposite based on fluorescent turn-on gold nanostars for near-infrared photothermal therapy and self-theranostic caspase-3 imaging of glioblastoma tumor cell. Colloids Surf B Biointerfaces 2018; 170:303-311. [DOI: 10.1016/j.colsurfb.2018.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022]
|
24
|
Gazzotti M, Arnaboldi S, Grecchi S, Giovanardi R, Cannio M, Pasquali L, Giacomino A, Abollino O, Fontanesi C. Spin-dependent electrochemistry: Enantio-selectivity driven by chiral-induced spin selectivity effect. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Bhunia K, Khilari S, Pradhan D. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Dalton Trans 2018; 46:15558-15566. [PMID: 29091086 DOI: 10.1039/c7dt02608k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platinum is an excellent electrocatalyst. However, the disadvantages of Pt as an electrocatalyst lie in its poor earth abundance, high cost, and poor stability due to surface poisoning. Thus it remains a challenge to find suitable alternative electrocatalysts and/or reduce the use of Pt. Herein, we report the solvothermal synthesis of bimetallic (PtAu and PtNi) and trimetallic (PtAuNi) alloy nanoparticles (NPs) with controlled percentages of individual metals. With an optimized Ni content, the trimetallic (Pt66Au11Ni23) alloy NPs show superior electrocatalytic activity (in terms of lower onset oxidation potential and higher mass activity) not only to bimetallic alloy NPs (PtAu and PtNi) but also to commercial Pt/C (20% Pt loading) for methanol electrooxidation (MEO). This enhanced electrocatalytic activity is due to the synergistic role of different metals in MEO catalysis. In particular, the catalytic activity is found to be controlled by the balance between the adsorption of methanol species on Pt and the removal of carbonaceous species from the catalyst surface by Au and Ni, as demonstrated here. The multimetallic alloy of optimal individual content thereby not only reduces the Pt content in the catalyst but also exhibits higher electrocatalytic activity than Pt/C for MEO that is desirable for fuel cell applications.
Collapse
Affiliation(s)
- Kousik Bhunia
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | | | | |
Collapse
|
26
|
Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron 2017; 98:76-82. [DOI: 10.1016/j.bios.2017.06.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
27
|
|
28
|
Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|