1
|
Qi R, Yang M, Zheng T, Liu X, Xia Y, Cheng YJ, Müller-Buschbaum P. Multifunctional Umbrella: In Situ Interface Film Forming on the High-Voltage LiCoO 2 Cathode by a Tiny Amount of Nanoporous Polymer Additives for High-Energy-Density Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312087. [PMID: 38441286 DOI: 10.1002/smll.202312087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Indexed: 08/02/2024]
Abstract
The LiCoO2 (LCO) cathode is foreseen for extensive commercial applications owing to its high specific capacity and stability. Therefore, there is considerable interest in further enhancing its specific capacity by increasing the charging voltage. However, single-crystal LCO suffers from a significant capacity degradation when charged to 4.5 V due to the irreversible phase transition and unstable structure. Herein, an ultra-small amount (0.5% wt. in the electrode) of multi-functional PIM-1 (a polymer with intrinsic microporosity) additive is utilized to prepare a kind of binder-free electrode. PIM-1 modulates the solvation structure of LiPF6 due to its unique structure, which helps to form a stable, robust, and inorganic-rich cathod-eelectrolyte interphase (CEI) film on the surface of LCO at a high voltage of 4.5 V. This reduces the irreversible phase transition of LCO, thereby enhancing the cyclic stability and improving the rate performance, providing new perspectives for the electrodes fabrication and improving LCO-based high-energy-density cathodes.
Collapse
Affiliation(s)
- Ruoxuan Qi
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ming Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Tianle Zheng
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Xingchen Liu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, P. R. China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- College of Renewable Energy, Hohai University, 1915 Hohai Ave, Changzhou, Jiangsu Province, 213200, P. R. China
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| |
Collapse
|
2
|
Lin HF, Tsai YR, Cheng CH, Cheng ST, Chen DZ, Wu NY. Structural and electrochemical properties of LiCoMnO4 doped with Mg, La, and F as a high-voltage cathode material for lithium ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
5
|
Abstract
Lithium-ion capacitors (LICs) have gained significant attention in recent years for their increased energy density without altering their power density. LICs achieve higher capacitance than traditional supercapacitors due to their hybrid battery electrode and subsequent higher voltage. This is due to the asymmetric action of LICs, which serves as an enhancer of traditional supercapacitors. This culminates in the potential for pollution-free, long-lasting, and efficient energy-storing that is required to realise a renewable energy future. This review article offers an analysis of recent progress in the production of LIC electrode active materials, requirements and performance. In-situ hybridisation and ex-situ recombination of composite materials comprising a wide variety of active constituents is also addressed. The possible challenges and opportunities for future research based on LICs in energy applications are also discussed.
Collapse
|
6
|
|
7
|
Ding J, Hu W, Paek E, Mitlin D. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chem Rev 2018; 118:6457-6498. [DOI: 10.1021/acs.chemrev.8b00116] [Citation(s) in RCA: 560] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Ding
- Chemistry and Materials, State University of New York, Binghamton, New York 13902, United States
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Eunsu Paek
- Chemical & Biomolecular Engineering and Mechanical Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - David Mitlin
- Chemical & Biomolecular Engineering and Mechanical Engineering, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|