1
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
3
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Rifai OM, Waldron FM, O'Shaughnessy J, Read FL, Gilodi M, Pastore A, Shneider N, Tartaglia GG, Zacco E, Spence H, Gregory JM. Amygdala TDP-43 pathology is associated with behavioural dysfunction and ferritin accumulation in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596819. [PMID: 38854008 PMCID: PMC11160765 DOI: 10.1101/2024.06.01.596819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43. Methods Here we examine post-mortem tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS). Results Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions. Notably, of these regions, pathology in the amygdala was the most predictive correlate of behavioural dysfunction in sALS. In the amygdala of sALS patients, we show variation in morphology, cell type predominance, and severity of pTDP-43 pathology. Further, we demonstrate that the presence and severity of intra-neuronal pTDP-43 pathology, but not astroglial pathology, or phosphorylated Tau pathology, is associated with behavioural dysfunction. Cases were also evaluated using a TDP-43 aptamer (TDP-43APT), which revealed that pathology was not only associated with behavioural symptoms, but also with ferritin levels, a measure of brain iron. Conclusions Intra-neuronal pTDP-43 and cytoplasmic TDP-43APT pathology in the amygdala is associated with behavioural symptoms in sALS. TDP-43APT staining intensity is also associated with increased ferritin, regardless of behavioural phenotype, suggesting that ferritin increases may occur upstream of clinical manifestation, in line with early TDP-43APT pathology, representing a potential region-specific imaging biomarker of early disease in ALS.
Collapse
Affiliation(s)
- Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, UK
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | | | | | - Fiona L Read
- Institute of Medical Sciences, University of Aberdeen, UK
| | - Martina Gilodi
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | - Gian Gaetano Tartaglia
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Elsa Zacco
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Holly Spence
- Institute of Medical Sciences, University of Aberdeen, UK
| | | |
Collapse
|
5
|
Lee S, Kovacs GG. The Irony of Iron: The Element with Diverse Influence on Neurodegenerative Diseases. Int J Mol Sci 2024; 25:4269. [PMID: 38673855 PMCID: PMC11049980 DOI: 10.3390/ijms25084269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
6
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Wang J, Fu J, Zhao Y, Liu Q, Yan X, Su J. Iron and Targeted Iron Therapy in Alzheimer's Disease. Int J Mol Sci 2023; 24:16353. [PMID: 38003544 PMCID: PMC10671546 DOI: 10.3390/ijms242216353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. β-amyloid plaque (Aβ) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (J.F.); (Y.Z.); (Q.L.); (X.Y.)
| |
Collapse
|
9
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Ahmadi S, Lotay N, Thompson M. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 2023; 153:108466. [PMID: 37244204 DOI: 10.1016/j.bioelechem.2023.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Electrochemical techniques are considered to be highly sensitive, capable of fast response and can be easily miniaturized, properties which can aid with regard to the fabrication of compact point-of-care medical devices; however, the main challenge in developing such a tool is overcoming a ubiquitous, problematic phenomenon known as non-specific adsorption (NSA). NSA is due to the fouling of non-target molecules in the blood on the recognition surface of the device. To overcome NSA, we have developed an affinity-based electrochemical biosensor using medical-grade stainless steel electrodes and following a unique and novel strategy using silane-based interfacial chemistry to detect lysophosphatidic acid (LPA), a highly promising biomarker, which was found to be elevated in 90 % of stage I OC patients and gradually increases as the disease progresses to later stages. The biorecognition surface was developed using the affinity-based gelsolin-actin system, which was previously investigated by our group to detect LPA using fluorescence spectroscopy. We demonstrate the capability of this label-free biosensor to detect LPA in goat serum with a detection limit of 0.7 µM as a proof-of-concept for the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Navina Lotay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
11
|
Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer’s Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration. Brain Sci 2023; 13:brainsci13030511. [PMID: 36979320 PMCID: PMC10046656 DOI: 10.3390/brainsci13030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and modified iron histochemical protocols, iron was found to be more tightly bound within cortical sections from patients with high levels of AD pathology compared to subjects with a diagnosis of something other than AD. To begin examining whether the bound iron could cause a functional iron deficiency, a protein-coding gene expression dataset of initial, middle, and advanced stages of AD from olfactory bulb tissue was analyzed for iron-related processes with an emphasis on anemia-related changes in initial AD to capture early pathogenic events. Indeed, anemia-related processes had statistically significant alterations, and the significance of these changes exceeded those for AD-related processes. Other changes in patients with initial AD included the expressions of transcripts with iron-responsive elements and for genes encoding proteins for iron transport and mitochondrial-related processes. In the latter category, there was a decreased expression for the gene encoding pitrilysin metallopeptidase 1 (PITRM1). Other studies have shown that PITRM1 has an altered activity in patients with AD and is associated with pathological changes in this disease. Analysis of a gene expression dataset from PITRM1-deficient or sufficient organoids also revealed statistically significant changes in anemia-like processes. These findings, together with supporting evidence from the literature, raise the possibility that a pathogenic mechanism of AD could be a functional deficiency of iron contributing to neurodegeneration.
Collapse
|
12
|
Lee S, Martinez-Valbuena I, de Andrea CE, Villalba-Esparza M, Ilaalagan S, Couto B, Visanji NP, Lang AE, Kovacs GG. Cell-Specific Dysregulation of Iron and Oxygen Homeostasis as a Novel Pathophysiology in PSP. Ann Neurol 2023; 93:431-445. [PMID: 36309960 DOI: 10.1002/ana.26540] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains. METHODS In brain regions vulnerable to PSP pathology (GP, SN, and putamen), we visualized iron deposition in tau-affected and unaffected neurons, astroglia, oligodendrocytes, and microglia, using a combination of iron staining with immunolabelling. To further explore molecular pathways underlying our observations, we examined the expression of key iron and oxygen homeostasis mRNA transcripts and proteins. RESULTS We found astrocytes as the major cell type accumulating iron in the early affected regions of PSP, highly associated with cellular tau pathology. The same regions are affected by dysregulated expression of alpha and beta hemoglobin and neuroglobin showing contrasting patterns. We discovered changes in iron and oxygen homeostasis-related gene expression associated with aging of the brain, and identified dysregulated expression of rare neurodegeneration with brain iron accumulation (NBIA) genes associated with tau pathology to distinguish PSP from the healthy aging brain. INTERPRETATION We present novel aspects of PSP pathophysiology highlighting an overlap with NBIA pathways. Our findings reveal potential novel targets for therapy development and have implications beyond PSP for other iron-associated neurodegenerative diseases. ANN NEUROL 2023;93:431-445.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Anatomy, Physiology, and Pathology, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Villalba-Esparza
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Anatomy, Physiology, and Pathology, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Suganthini Ilaalagan
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Naomi P Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Gholami A, Dehghan G, Rashtbari S, Jouyban A. Probing the Interactions of Lamotrigine and Phenobarbital with Tau Protein: Experimental and Molecular Modeling Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e129599. [PMID: 36945338 PMCID: PMC10024808 DOI: 10.5812/ijpr-129599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Tau, as a small protein in neurons, plays a main role in stabilizing and assembling the internal microtubules. Here, the effects of antiepileptic drugs, including lamotrigine (LTG) and phenobarbital (PHB), on tau protein structure have been investigated by surface plasmon resonance (SPR), fluorescence spectroscopy along molecular modeling. Fluorescence data analysis revealed that both drugs quench the intrinsic emission intensity of tau protein via a static quenching mechanism. Analysis of SPR data at three different temperatures revealed that binding of LTG and PHB to tau protein leads to a decrease and increase in equilibrium constants (KD) values with increasing temperature, respectively. Therefore, the affinity of LTG decreases and PHB increases with increasing temperature. In addition, molecular docking studies indicated that both LTG and PHB bind to the S1 pocket of tau protein. Our data demonstrated the preventive effect of two important antiepileptic pharmaceuticals on the aggregation of tau protein. Given that any damage to the tau protein possibly leads to neurodegenerative diseases, this study can provide useful and important information and a basis for further research and study to treat tauopathy.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| |
Collapse
|
14
|
Shiravandi A, Yari F, Tofigh N, Kazemi Ashtiani M, Shahpasand K, Ghanian MH, Shekari F, Faridbod F. Earlier Detection of Alzheimer's Disease Based on a Novel Biomarker cis P-tau by a Label-Free Electrochemical Immunosensor. BIOSENSORS 2022; 12:879. [PMID: 36291017 PMCID: PMC9599477 DOI: 10.3390/bios12100879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Early detection of cis phosphorylated tau (cis P-tau) may help as an effective treatment to control the progression of Alzheimer's disease (AD). Recently, we introduced for the first time a monoclonal antibody (mAb) with high affinity against cis P-tau. In this study, the cis P-tau mAb was utilized to develop a label-free immunosensor. The antibody was immobilized onto a gold electrode and the electrochemical responses to the analyte were acquired by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The immunosensor was capable of selective detection of cis P-tau among non-specific targets like trans P-tau and major plasma proteins. A wide concentration range (10 × 10-14 M-3.0 × 10-9 M) of cis P-tau was measured in PBS and human serum matrices with a limit of detection of 0.02 and 0.05 pM, respectively. Clinical applicability of the immunosensor was suggested by its long-term storage stability and successful detection of cis P-tau in real samples of cerebrospinal fluid (CSF) and blood serum collected from human patients at different stages of AD. These results suggest that this simple immunosensor may find great application in clinical settings for early detection of AD which is an unmet urgent need in today's healthcare services.
Collapse
Affiliation(s)
- Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Farzaneh Yari
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6455, Iran
| | - Nahid Tofigh
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Mohammad-Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Faezeh Shekari
- Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6455, Iran
| |
Collapse
|
15
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
16
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Lippi SLP, Neely CLC, Amaya AL. Trace concentrations, heavy implications: Influences of biometals on major brain pathologies of Alzheimer's disease. Int J Biochem Cell Biol 2021; 143:106136. [PMID: 34906694 DOI: 10.1016/j.biocel.2021.106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that involves accumulation of toxic protein species, notably amyloid-β (Aβ)plaques and neurofibrillary tau tangles that are associated with cognitive decline. These proteins can bind metal ions, ultimately affecting their structure and function. In this review, we discuss key biometals such as zinc, copper, and iron that interact with protein species involved in AD, mainly Aβ, tau, and the late-onset AD risk factor Apolipoprotein E (APOE). These metals interact with Aβ and tau proteins, affecting their aggregation and toxicity. The allele variants of APOE also have different interactions with these metals, affecting APOE protein expression and aggregation of AD protein species.
Collapse
Affiliation(s)
- Stephen L P Lippi
- Angelo State University, Department of Psychology, San Angelo, TX, USA.
| | - Caroline L C Neely
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | - Anthony L Amaya
- University of Texas at San Antonio, Department of Chemistry, San Antonio, TX, USA
| |
Collapse
|
18
|
Ahmad S, Hossain MN, Ahmadi S, Kerman K, Kraatz HB. Electrochemical distinction of neuronal and neuroblastoma cells via the phosphorylation of the cellular extracellular membrane. Anal Biochem 2021; 645:114434. [PMID: 34785194 DOI: 10.1016/j.ab.2021.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
In this contribution we establish a proof of concept method for monitoring, quantifying and differentiating the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells and neuroblastoma cells by three prominent ectokinases PKA, PKC and Src. Herein it is demonstrated that a combination of different experimental techniques, including fluroesence microscopy, quartz crystal microscopy (QCM) and electrochemistry, can be used to detect extracellular phosphorylation levels of neuronal and neuroblastoma cells. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate that the extracellular phosphorylation of neuronal cells differs significantly in terms of its phosphorylation profile from diseased neuroblastoma cells and the strength of surface electrochemical techniques in the differentiation process. We reveal that using electrochemistry, the percent compositions of neuronal and neuroblastoma cells can also be identified.
Collapse
Affiliation(s)
- S Ahmad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - M N Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - S Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - K Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - H-B Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| |
Collapse
|
19
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2021; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| |
Collapse
|
20
|
Rao SS, Lago L, Volitakis I, Shukla JJ, McColl G, Finkelstein DI, Adlard PA. Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and Alters Tau Pathology. Neurotherapeutics 2021; 18:1081-1094. [PMID: 33410108 PMCID: PMC8423882 DOI: 10.1007/s13311-020-00972-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
The accumulation of neurofibrillary tangles (NFTs), which is composed of abnormally hyperphosphorylated tau aggregates, is the classic neuropathology associated with cognitive dysfunction in tauopathies such as Alzheimer's disease (AD). However, there is an emerging theory suggesting that dysregulation in cerebral iron may contribute to NFT formation. Iron is speculated to bind to tau and induce conformational changes of the protein, potentially leading to subsequent aggregation and cognitive decline. Deferiprone (DFP) is a clinically available iron chelator, which has demonstrated potential therapeutic advantages of chelating iron in neurodegenerative disorders, and is currently in clinical trials for AD. However, its effect on tau pathology remains unclear. Here, we report the effects of short-term DFP treatment (4 weeks, 100 mg/kg/daily, via oral gavage) in a mixed-gender cohort of the rTg(tauP301L)4510 mouse model of tauopathy. Our results revealed that DFP improved Y-maze and open field performance, accompanied by a 28% decrease in brain iron levels, measured by inductively coupled plasma mass spectrometry (ICP-MS) and reduced AT8-labeled p-tau within the hippocampus in transgenic tau mice. This data supports the notion that iron may play a neurotoxic role in tauopathies and may be a potential therapeutic target for this class of disorders that can be modulated by the clinically available metal chelator DFP.
Collapse
Affiliation(s)
- Shalini S Rao
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Larissa Lago
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Irene Volitakis
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jay J Shukla
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
21
|
Ficiarà E, Boschi S, Ansari S, D'Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids. Front Aging Neurosci 2021; 13:607858. [PMID: 33692679 PMCID: PMC7937894 DOI: 10.3389/fnagi.2021.607858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy.,Department NEUROFARBA, University of Firenze, Firenze, Italy
| | - Shoeb Ansari
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Federico D'Agata
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Indaco
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Innocenzo Rainero
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| |
Collapse
|
22
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
23
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
24
|
|
25
|
Ahmad S, Hossain MN, Ahmadi S, Kerman K, Kraatz HB. Electrochemical detection of neuronal extracellular phosphorylation by PKA, PKC and Src. Anal Biochem 2020; 608:113892. [PMID: 32810472 DOI: 10.1016/j.ab.2020.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
The focus of this work described here is to establish a method for monitoring and quantifying the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells by three ectokinases PKA, PKC and Src; these are kinases that are known to be present in the extracellular matrix. Here is demonstrated that a combination of different experimental techniques, including microscopy and electrochemistry, can be used to detect extracellular phosphorylations. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate the extracellular phosphorylation of neuronal cells and the strength of surface electrochemical techniques in the investigation of cellular phosphorylation.
Collapse
Affiliation(s)
- S Ahmad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - M N Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - S Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - K Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - H-B Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| |
Collapse
|
26
|
LI LY, WANG XY. Progress in Analysis of Tau Protein. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Muñoz P, Ardiles ÁO, Pérez-Espinosa B, Núñez-Espinosa C, Paula-Lima A, González-Billault C, Espinosa-Parrilla Y. Redox modifications in synaptic components as biomarkers of cognitive status, in brain aging and disease. Mech Ageing Dev 2020; 189:111250. [PMID: 32433996 DOI: 10.1016/j.mad.2020.111250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that includes several changes that gradually make organisms degenerate and die. Harman's theory proposes that aging is a consequence of the progressive accumulation of oxidative modifications mediated by reactive oxygen/nitrogen species, which plays an essential role in the development and progression of many neurodegenerative diseases. This review will focus on how abnormal redox modifications induced by age impair the functionality of neuronal redox-sensitive proteins involved in axonal elongation and guidance, synaptic plasticity, and intercellular communication. We will discuss post-transcriptional regulation of gene expression by microRNAs as a mechanism that controls the neuronal redox state. Finally, we will discuss how some brain-permeant antioxidants from the diet have a beneficial effect on cognition. Taken together, the evidence revised here indicates that oxidative-driven modifications of specific proteins and changes in microRNA expression may be useful biomarkers for aging and neurodegenerative diseases. Also, some specific antioxidant therapies have undoubtedly beneficial neuroprotective effects when administered in the correct doses, in the ideal formulation combination, and during the appropriate therapeutic window. The use of some antioxidants is, therefore, still poorly explored for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Pablo Muñoz
- Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Biomedical Research Center, Universidad de Valparaíso, Valparaíso, Chile; Thematic Task Force on Healthy Aging, CUECH Research Network.
| | - Álvaro O Ardiles
- Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Thematic Task Force on Healthy Aging, CUECH Research Network; Interdisciplinary Center of Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso, Chile; Interdisciplinary Center for Health Studies, Universidad de Valparaíso, Valparaíso, Chile
| | - Boris Pérez-Espinosa
- Thematic Task Force on Healthy Aging, CUECH Research Network; Laboratorio biología de la Reproduccion, Departamento Biomédico, Facultad Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Thematic Task Force on Healthy Aging, CUECH Research Network; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Paula-Lima
- Thematic Task Force on Healthy Aging, CUECH Research Network; Institute for Research in Dental Sciences, Faculty of Dentistry; Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute (BNI) and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Christian González-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network; Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Healthy Aging, CUECH Research Network; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile; Laboratory of Molecular Medicine - LMM, Center for Education, Healthcare and Investigation - CADI, University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
28
|
Exploring the interactions of iron and zinc with the microtubule binding repeats R1 and R4. J Inorg Biochem 2020; 205:110987. [DOI: 10.1016/j.jinorgbio.2019.110987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022]
|
29
|
Rao SS, Lago L, Gonzalez de Vega R, Bray L, Hare DJ, Clases D, Doble PA, Adlard PA. Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. Metallomics 2020; 12:301-313. [PMID: 31904058 DOI: 10.1039/c9mt00267g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A dysregulation in the homeostasis of metals such as copper, iron and zinc is speculated to be involved in the pathogenesis of tauopathies, which includes Alzheimer's disease (AD). In particular, there is a growing body of evidence to support a role for iron in facilitating the hyperphosphorylation and aggregation of the tau protein into neurofibrillary tangles (NFTs) - a primary neuropathological hallmark of tauopathies. Therefore, the aim of this study was to characterize the spatial and temporal brain metallomic profile in a mouse model of tauopathy (rTg(tauP301L)4510), so as to provide some insight into the potential interaction between tau pathology and iron. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), our results revealed an age-dependent increase in brain iron levels in both WT and rTg(tauP301L)4510 mice. In addition, size exclusion chromatography-ICP-MS (SEC-ICP-MS) revealed significant age-related changes in iron bound to metalloproteins such as ferritin. The outcomes from this study may provide valuable insight into the inter-relationship between iron and tau in ageing and neurodegeneration.
Collapse
Affiliation(s)
- Shalini S Rao
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | | | - Lisa Bray
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| |
Collapse
|
30
|
Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL, Kent TA. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol 2020; 184:101716. [PMID: 31604111 PMCID: PMC7850812 DOI: 10.1016/j.pneurobio.2019.101716] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/12/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The complexity of Alzheimer's disease (AD) complicates the search for effective treatments. While the key roles of pathologically modified proteins has occupied a central role in hypotheses of the pathophysiology, less attention has been paid to the potential role for transition metals overload, subsequent oxidative stress, and tissue injury. The association of transition metals, the major focus heretofore iron and amyloid, the same can now be said for the likely pathogenic microtubular associated tau (MAPT). This review discusses the interplay between iron, pathologically modified tau and oxidative stress, and connects many related discoveries. Basic principles of the transition to pathological MAPT are discussed. Iron, its homeostatic mechanisms, the recently described phenomenon of ferroptosis and purported, although still controversial roles in AD are reviewed as well as considerations to overcome existing hurdles of iron-targeted therapeutic avenues that have been attempted in AD. We summarize the involvement of multiple pathological pathways at different disease stages of disease progression that supports the potential for a combinatorial treatment strategy targeting multiple factors.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX, United States
| | - George R Jackson
- Department of Neurology Baylor College of Medicine, Houston, TX, United States; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M Tour
- Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX, United States
| | - Ah-Lim Tsai
- Department of Biochemistry and Hematology, McGovern School of Medicine, UT Health Science Center, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States; Department of Chemistry, Rice University, Houston, TX, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| |
Collapse
|
31
|
Rao SS, Portbury SD, Lago L, Bush AI, Adlard PA. The Iron Chelator Deferiprone Improves the Phenotype in a Mouse Model of Tauopathy. J Alzheimers Dis 2020; 77:753-771. [PMID: 32741833 DOI: 10.3233/jad-200551] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Abnormally hyperphosphorylated tau is a defining pathological feature of tauopathies, such as Alzheimer's disease (AD), and accumulating evidence suggests a role for iron in mediating tau pathology that may lead to cognitive decline in these conditions. The metal chelator deferiprone (DFP), which has a high affinity for iron, is currently in clinical trials for AD and Parkinson's disease. However, the effect of DFP on tau pathology remains underexplored. OBJECTIVE We aimed to investigate the impact of chronic DFP treatment on tau pathology using a well-characterized mouse model of tauopathy (rTg(tauP301L)4510). METHODS Animals were treated daily with DFP (100 mg/kg) via oral gavage for 16 weeks. After 14 weeks, mice were tested in the Y-maze, open field, Morris water maze, and rotorod. At the end of the study, brain tissue was collected to examine metal levels (using inductively coupled plasma-mass spectrometry) and for western blot analysis of DFP on tau and iron associated pathways. RESULTS DFP significantly reduced anxiety-like behavior, and revealed a trend toward improved cognitive function. This was accompanied by a decrease in brain iron levels and sarkosyl-insoluble tau. Our data also showed downregulation of the tau kinases glycogen synthase kinase 3β and cyclin dependent kinase-5 in DFP treated mice and an increase in the methylation of the catalytic subunit of protein phosphatase 2A. CONCLUSION These data support the hypothesis that suggests that iron plays a neurotoxic role in tauopathies and may be a potential therapeutic target for this class of disorders.
Collapse
Affiliation(s)
- Shalini S Rao
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart D Portbury
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Larissa Lago
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Electrochemical studies of human nAChR a7 subunit phosphorylation by kinases PKA, PKC and Src. Anal Biochem 2019; 574:46-56. [DOI: 10.1016/j.ab.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
33
|
Ahmadi S, Zhu S, Sharma R, Wilson DJ, Kraatz HB. Interaction of metal ions with tau protein. The case for a metal-mediated tau aggregation. J Inorg Biochem 2019; 194:44-51. [DOI: 10.1016/j.jinorgbio.2019.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
|
34
|
Ahmadi S, Zhu S, Sharma R, Wu B, Soong R, Dutta Majumdar R, Wilson DJ, Simpson AJ, Kraatz HB. Aggregation of Microtubule Binding Repeats of Tau Protein is Promoted by Cu 2. ACS OMEGA 2019; 4:5356-5366. [PMID: 31001602 PMCID: PMC6463671 DOI: 10.1021/acsomega.8b03595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Understanding the factors that give rise to tau aggregation and reactive oxygen species (ROS) is the key aspect in Alzheimer's disease pathogenesis. Microtubule (MT) binding repeats of tau protein were suggested to play a critical role in tau aggregation. Here, we show that the interaction of Cu2+ with full-length MT binding repeats R1-R4 leads to the aggregation, and a Cys-based redox chemistry is critically involved in tau aggregation leading to disulfide-bridge dimerization of R2 and R3 and further aggregation into a fibrillar structure. Notably, ascorbate and glutathione, the most abundant antioxidants in neurons, cannot prevent the effect of Cu2+ on R2 and R3 aggregation. Detailed ESI-MS and NMR experiments demonstrate the interaction of Cu2+ with MT binding repeats. We show that redox activity of copper increases when bound to the MT repeats leading to ROS formation, which significantly contribute to cellular damage and neuron death. Results presented here provide new insights into the molecular mechanism of tau aggregation and ROS formation and suggest a new target domain for tau aggregation inhibitors.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - Shaolong Zhu
- Chemistry
Department, York University, Toronto, Ontario M3J1P3, Canada
- The
Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Renu Sharma
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Bing Wu
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - R. Dutta Majumdar
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Derek J. Wilson
- Chemistry
Department, York University, Toronto, Ontario M3J1P3, Canada
- The
Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Andre J. Simpson
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
35
|
Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration - Cause or Consequence? Front Neurosci 2019; 13:180. [PMID: 30881284 PMCID: PMC6405645 DOI: 10.3389/fnins.2019.00180] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Iron dyshomeostasis can cause neuronal damage to iron-sensitive brain regions. Neurodegeneration with brain iron accumulation reflects a group of disorders caused by iron overload in the basal ganglia. High iron levels and iron related pathogenic triggers have also been implicated in sporadic neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple system atrophy (MSA). Iron-induced dyshomeostasis within vulnerable brain regions is still insufficiently understood. Here, we summarize the modes of action by which iron might act as primary or secondary disease trigger in neurodegenerative disorders. In addition, available treatment options targeting brain iron dysregulation and the use of iron as biomarker in prodromal stages are critically discussed to address the question of cause or consequence.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Joppe K, Roser AE, Maass F, Lingor P. The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System. Front Neurosci 2019; 13:15. [PMID: 30723395 PMCID: PMC6350163 DOI: 10.3389/fnins.2019.00015] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
The homeostasis of iron is of fundamental importance in the central nervous system (CNS) to ensure biological processes such as oxygen transport, mitochondrial respiration or myelin synthesis. Dyshomeostasis and accumulation of iron can be observed during aging and both are shared characteristics of several neurodegenerative diseases. Iron-mediated generation of reactive oxygen species (ROS) may lead to protein aggregation and cellular toxicity. The process of misfolding and aggregation of neuronal proteins such as α-synuclein, Tau, amyloid beta (Aβ), TDP-43 or SOD1 is a common hallmark of many neurodegenerative disorders and iron has been shown to facilitate protein aggregation. Thus, both, iron and aggregating proteins are proposed to amplify their detrimental effects in the disease state. In this review, we give an overview on effects of iron on aggregation of different proteins involved in neurodegeneration. Furthermore, we discuss the proposed mechanisms of iron-mediated toxicity and protein aggregation emphasizing the red-ox chemistry and protein-binding properties of iron. Finally, we address current therapeutic approaches harnessing iron chelation as a disease-modifying intervention in neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Karina Joppe
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| |
Collapse
|
37
|
Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother 2019; 111:1277-1289. [PMID: 30841441 DOI: 10.1016/j.biopha.2018.12.140] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are among the most studied issues both in medicine and pharmacy. Despite long and extensive research, there is no effective treatment prescribed for such diseases, including Alzheimer's or Parkinson's. Available data exposes their multi-faceted character that requires a complex and multidirectional approach to treatment. In this case, the most important challenge is to understand the neurodegenerative mechanisms, which should permit the development of more elaborate and effective therapies. In the submitted review, iron and zinc are discussed as important and perfectly possible neurodegenerative factors behind Alzheimer's and Parkinson's diseases. It is commonly known that these elements are present in living organisms and are essential for the proper operation of the body. Still, their influence is positive only when their proper balance is maintained. Otherwise, when any imbalance occurs, this can eventuate in numerous disturbances, among them oxidative stress, accumulation of amyloid β and the formation of neurofibrillary tangles, let alone the increase in α-synuclein concentration. At the same time, available research data reveals certain discrepancies in approaching metal ions as either impassive, helpful, or negative factors influencing the development of neurodegenerative changes. This review outlines selected neurodegenerative disorders, highlights the role of iron and zinc in the human body and discusses cases of their imbalance leading to neurodegenerative changes as shown in vitro and in vivo studies as well as through relevant mechanisms.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Monika Waksmundzka-Hajnos
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
38
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, Li W, Jaffrezic-Renault N, Mei Y, Guo Z. Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 2018; 147:13-24. [PMID: 29307704 DOI: 10.1016/j.biochi.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a chronic disease amongst people aged 65 and older. Increasing evidence has illustrated that early diagnosis holds the key to effective treatment of AD. A variety of detection techniques have been developed. Biosensors are excellent analytical tools which have applications in detecting the biomarkers of AD. This review includes appropriate bioreceptors to achieve highly sensitive and selective quantification of AD biomarkers by using transducers. AD biomarkers such as tau protein, amyloid β peptides and apolipoprotein E4, are firstly summarized. The most commonly used bioreceptors, including aptamers and antibodies, are also reviewed. We introduce aptamers specific to AD biomarkers, list the sequences of aptamers designed to capture AD biomarkers and compare the properties of aptamers with those of antibodies with regard to their efficiency as bio-recognition elements. We discuss the recent progress of aptamer systems' applications in AD biomarkers in biosensing. The review also discusses novel strategies used for signal amplification in sensing AD biomarkers.
Collapse
Affiliation(s)
- Bingqing Shui
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Anca Florea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania.
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Qin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Yingying Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Wen Li
- School of Arts, Wuhan Business University, Wuhan 430056, PR China.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, Rue de La Doua, Villeurbanne 69100, France.
| | - Yong Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
40
|
Allan JTS, Quaranta S, Ebralidze II, Egan JG, Poisson J, Laschuk NO, Gaspari F, Easton EB, Zenkina OV. Terpyridine-Based Monolayer Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40438-40445. [PMID: 29076345 DOI: 10.1021/acsami.7b11848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively). These novel light-reflective EC materials demonstrate a high color difference, significant durability, and fast switching speed. The Fe-based material shows an excellent change of optical density and coloration efficiency. The results of thermogravimetric analysis suggest high thermal stability of the materials. Indeed, the EC characteristics do not change significantly after heating of Fe-L/ITO at 100 °C for 1 week, confirming the excellent stability and high EC reversibility. The proposed fabrication approach that utilizes interparticle porosity of the support and requires as low as a monolayer of EC active molecule benefits from the significant molecular economy when compared with traditional polymer-based EC devices and is significantly less time-consuming than layer-by-layer growth of coordination-based molecular assemblies.
Collapse
Affiliation(s)
- Jesse T S Allan
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Simone Quaranta
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jacquelyn G Egan
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jade Poisson
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Nadia O Laschuk
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Franco Gaspari
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - E Bradley Easton
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Olena V Zenkina
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|