1
|
Kuang K, Chen Y, Li Y, Ji Y, Jia N. N-doped TiO 2/Ti 3C 2-driven self-photocatalytic molecularly imprinted ECL sensor for sensitive and steady detection of dexamethasone. Biosens Bioelectron 2024; 247:115914. [PMID: 38091899 DOI: 10.1016/j.bios.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
The conventional luminol-based electrochemiluminescence (ECL) biosensor suffers from hampered signal stability due to the self-decomposition of the H2O2 co-reactant. Here, we propose an N-doped TiO2/Ti3C2 heterojunction driven self-photocatalytic platform for ECL signal amplification and then combine it with molecular imprinting technology for sensitive and steady detection of dexamethasone (DXM). Unlike traditional cases involving specific catalysts or external electron injection, the initial luminescence of luminol in this new system is utilized as the excitation light of N-doped TiO2/Ti3C2 photocatalyst to promote the conversation of dissolved oxygen to H2O2, supplying more co-reactants to improve ECL of luminol in turn. Thanks to the heterojunction and self-photocatalytic cyclic amplification, this molecularly imprinted ECL sensor exhibits a wide linear range (1.0 × 10-6-1.0 × 101 μg mL-1) and a low detection limit, as well as excellent anti-interference capability, sensitivity, and stability. This work contributes to more reliable and steady detection of DXM and brings new insights into developing exogenous co-reactant-free self-enhancement ECL models for biosensor applications.
Collapse
Affiliation(s)
- Kaida Kuang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Yang Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Ya Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Zheng K, Pan J, Yu Z, Yi C, Li MJ. A smartphone-assisted electrochemiluminescent detection of miRNA-21 in situ using Ru(bpy) 32+@MOF. Talanta 2024; 268:125310. [PMID: 37866303 DOI: 10.1016/j.talanta.2023.125310] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
We have proposed a signal dual-amplification electrochemiluminescence (ECL) strategy based on tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+) as chromophores confined with three-dimensional (3D) zinc oxalate metal-organic frameworks (Ru(bpy)32+@MOFs) for the detection of miRNA-21. The three-dimensional chromophore connectivity in zinc oxalate MOFs provided a network among Ru(bpy)32+ units, shielding the chromophores from solvent molecules and resulting in high Ru(II) complex emission efficiency. Additionally, we discovered that magnetic beads (MBs) used as carrier for enriched signals contribute to enhanced ECL intensity of the chromophore. To evaluate its clinical application, we applied this method to determine the concentration of miRNA-21 solutions ranging from 1.56 to 100 nM, obtaining a calibration curve of ECL intensity versus logarithm of concentration (logC) of miRNA-21 with a high correlation coefficient. This work demonstrates the construction of a signal amplification strategy ECL biosensor for miRNA using Ru(bpy)32+@MOF systems and its application in ECL detection for analyte methodology.
Collapse
Affiliation(s)
- Kai Zheng
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Jiangfei Pan
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zipei Yu
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| | - Mei-Jin Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
3
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
4
|
Hong LR, Xu H, Zhu Y, Li Z, Bai B, Ding G. Surface Plasmon Resonance Enhanced Hydrogen Evolution from Water with Graphitic Carbon Nitride Photocatalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-04168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Fidel Alba A, Fernández-de Luis R, Totoricaguena-Gorriño J, Ruiz-Rubio L, Sánchez J, Luis Vilas-Vilela J, Lanceros-Méndez S, Javier del Campo F. Understanding Electrogenerated Chemiluminescence at graphite screen-printed electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
He S, Zhang P, Sun J, Ji Y, Huang C, Jia N. Integrating potential-resolved electrochemiluminescence with molecularly imprinting immunoassay for simultaneous detection of dual acute myocardial infarction markers. Biosens Bioelectron 2022; 201:113962. [PMID: 35021132 DOI: 10.1016/j.bios.2022.113962] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/11/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
Abstract
A novel potential-resolved molecularly imprinted electrochemical luminescence (ECL) immunosensor has been developed for the first time for the dual sensitive detection of markers of acute myocardial infarction (AMI): cardiac troponin I (cTnI) and myoglobin (Mb). In this work, cost-effective and robust molecularly imprinted polymer (MIP) as biomimetic antibody was used to construct the immunosensors through electropolymerization and elution to form polydopamine (PDA)-MIP modified electrode. In the presence of AMI biomarkers, two ECL probes including Ru(bpy)32+@ MOCs and MoS2 QDs functionalized by cTnI antibody and Mb aptamer could be specifically captured respectively. And two potential distinct ECL signals will be generated in one potential scan. The intensity of ECL reflects the concentrations of cTnI and Mb. The two ECL probes were characterized with field emission scanning electron microscopy, X-ray diffraction, FT-IR spectrum and UV-Vis diffuse reflectance spectroscopy. The prepared sensor exhibited a wide linear range (0.05-104 ng/mL) and a low detection limit (0.0184 ng/mL for cTnI and 0.0492 ng/mL for Mb). Additionally, the MIP-ECL sensor displayed excellent anti-interference, sensitivity and stability to detect cTnI and Mb. Therefore, it will be conducive to accelerate more precise and credible early diagnosis for AMI.
Collapse
Affiliation(s)
- Shuang He
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Pei Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens Bioelectron 2021; 194:113601. [PMID: 34530372 DOI: 10.1016/j.bios.2021.113601] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
In this work, a novel electrochemiluminescence (ECL) aptasensor was structured for the detection of four organophosphorus pesticides (OPs). Firstly, multi-walled carbon nanotubes (MWCNTs) were used to create a favorable loading interface for the fixation of tris (2, 2'-bipyridyl) ruthenium (II) (Ru (bpy)32+). At the same time, copper (core)-gold (shell) bimetallic nanoparticles (Cu@Au NPs) were synthesized in the aqueous phase for the sensor construction. Gold nanoparticles (Au NPs) could promote the electrochemiluminescence intensity of Ru (bpy)32+ with high efficiency by catalyzing the oxidation process of tri-n-propylamine (TPrA). Compared with the Au NPs, Cu@Au NPs increased the solid loading of Au NPs by virtue of the large specific surface area of copper nanoparticles (Cu NPs), which could further improve the sensitivity of aptasensor. When OPs were added, the ECL intensity was significantly reduced, and the concentration of OPs could be detected through the ECL intensity. Under the optimum conditions, the aptasensor had a wider dynamic range and ultra-low detection limit for the detection of four pesticides: profenofos, isocarbophos, phorate, and omethoate, and their detection limits were 3 × 10-4 ng/mL, 3 × 10-4 ng/mL, 3 × 10-3 ng/mL, and 3 × 10-2 ng/mL respectively (S/N = 3). The aptasensor had the merits of good stability, reproducibility, and specificity, and had a favorable recovery rate in detecting OPs residues in vegetables. This work provided an effective method for the construction of a simple, rapid, and sensitive biosensor.
Collapse
|
8
|
Hur JU, An GS, Choi SC. Preparation of Multilayered Core-Shell Fe 3O 4-SnO 2-C Nanoparticles via Polymeric/Silane-Amino Functionalization. NANOMATERIALS 2021; 11:nano11112877. [PMID: 34835642 PMCID: PMC8625955 DOI: 10.3390/nano11112877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/05/2022]
Abstract
Multilayered core–shell Fe3O4-SnO2-C nanoparticles were prepared via surface treatment and carbonization at atmospheric pressure. Fe3O4-SnO2 nanoparticles were prepared by the carboxylation of the pivotal particles (Fe3O4) with an anionic surfactant to immobilize SnO2 nanoparticles. A method was proposed to externally surround hydrophilic carbon with amine-forming materials, polyethyleneimine (PEI), and (3-Aminopropyl) triethoxysilane (APTES). The synthesis strategy was based on the electrostatic bonding of the introduced amine group with the hydroxyl group on the carbon precursor and the carbonization of the coating layer by the catalytic reaction of sulfuric acid.
Collapse
Affiliation(s)
- Jae Uk Hur
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Gye Seok An
- Department of Advanced Materials Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si 16227, Korea
- Correspondence: (G.S.A.); (S.-C.C.); Tel.: +82-31-249-9763 (G.S.A.); +82-2-2220-0505 (S.-C.C.)
| | - Sung-Churl Choi
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Correspondence: (G.S.A.); (S.-C.C.); Tel.: +82-31-249-9763 (G.S.A.); +82-2-2220-0505 (S.-C.C.)
| |
Collapse
|
9
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
10
|
|
11
|
Su L, Mao J, Wang S, Hu Y. A bimodal electrochemiluminescence method based on dual-enhancement Ru(bpy)32+/CQDs/AA system combined with magnetic field enhanced solid-phase microextraction for the direct determination of ascorbic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Wang L, Xing B, Ren X, Hu X, Wang H, Wu D, Wei Q. Mo2C combined with carbon material nanosphere as an electrochemiluminescence super-enhancer and antibody label for ultrasensitive detection of cardiac troponin I. Biosens Bioelectron 2020; 150:111910. [DOI: 10.1016/j.bios.2019.111910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
|
13
|
A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)32+ and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au. Biosens Bioelectron 2019; 142:111513. [DOI: 10.1016/j.bios.2019.111513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
14
|
Qian X, Zhou X, Qu Q, Li L, Yang L. Ultrasensitive and robust electrochemical sensing platform for the detection of squamous cell carcinoma antigen using water-soluble pillar [5]arene-Pd/MoS2 nanocomposites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Shan Y, Jin X, Gong M, Lv L, Li L, Jiang M, Wang X, Xu J. A Sandwich‐type Electrochemiluminescence Aptasensor for Thrombin Based on Functional Co‐polymer Electrode Using Ru(bpy)
3
2+
Doped Nanocomposites as Signal‐amplifying Tags. ELECTROANAL 2019. [DOI: 10.1002/elan.201900022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanqun Shan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Xin Jin
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Miao Gong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Linyu Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Meng Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing 210009 China
| | - Jun Xu
- Institute of Toxicology and Functional AssessmentJiangsu Provincial Center for Disease Control and Prevention Nanjing 210009 China
| |
Collapse
|
16
|
Fan D, Liu X, Bao C, Feng J, Wang H, Ma H, Wu D, Wei Q. A novel sandwich-type photoelectrochemical immunosensor based on Ru(bpy) 32+ and Ce-CdS co-sensitized hierarchical ZnO matrix and dual-inhibited polystyrene@CuS-Ab 2 composites. Biosens Bioelectron 2019; 129:124-131. [PMID: 30690176 DOI: 10.1016/j.bios.2019.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
Abstract
A novel and sensitive sandwich-type photoelectrochemical (PEC) immunosensor was developed for the quantitative detection of β-amyloid protein (Aβ). A ITO electrode was sequentially coated with hierarchical porous zinc oxide (ZnO) microspheres with a large specific area, sensitized with tris(bipyridine)ruthenium(II) ion (Ru(bpy)32+) to achieve high visible light absorption, and modified with cerium-doped cadmium sulfide (Ce-CdS) nanoparticles to enhance the PEC response. Under the stimulation of visible light and ascorbic acid as an efficient electron donor, the photoelectric signal of ZnO/Ru(bpy)32+/Ce-CdS was 70 times that of pure ZnO. The amino-functionalized polystyrene (PS) microspheres coated with copper sulfide (CuS) was linked with a secondary antibody (Ab2) for the first time for the Aβ detection by the immunosensor. The good insulation and steric resistance of the as-prepared polystyrene@CuS-Ab2 (PS@CuS-Ab2) composite significantly weakened the photocurrent response of the immunosensor in the specific immune recognition. Under the optimal conditions, the quantitative detection of Aβ was achieved within the range of 0.001-100 ng/mL with the detection limit of 0.37 pg/mL. In addition, the PEC immunosensor is easy to make, stable and selective, which has provided a good experimental platform for the detection of disease biomarkers.
Collapse
Affiliation(s)
- Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Xin Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunzhu Bao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
17
|
Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal–Organic Frameworks for Ultrasensitive Detection of Amyloid-β. Anal Chem 2019; 91:1989-1996. [DOI: 10.1021/acs.analchem.8b04332] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Yaoguang Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Xiaojian Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Qi Yue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People’s Republic of China
| |
Collapse
|
18
|
An Electrochemiluminescence Sensor Based on Nafion/Magnetic Fe₃O₄ Nanocrystals Modified Electrode for the Determination of Bisphenol A in Environmental Water Samples. SENSORS 2018; 18:s18082537. [PMID: 30081469 PMCID: PMC6111305 DOI: 10.3390/s18082537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/16/2022]
Abstract
The well-dispersive and superparamagnetic Fe₃O₄-nanocrystals (Fe₃O₄-NCs) which could significantly enhance the anodic electrochemiluminescence (ECL) behavior of luminol, were synthesized in this study. Compared to ZnS, ZnSe, CdS and CdTe nanoparticles, the strongest anodic ECL signals were obtained at +1.6 V on the Fe₃O₄-NCs coated glassy carbon electrode. The ECL spectra revealed that the strong ECL resonance energy transfer occurred between luminol and Fe₃O₄-NCs. Furthermore, under the optimized ECL experimental conditions, such as the amount of Fe₃O₄-NCs, the concentration of luminol and the pH of supporting electrolyte, BPA exhibited a stronger distinct ECL quenching effect than its structural analogs and a highly selective and sensitive ECL sensor for the determination of bisphenol A (BPA) was developed based on the Fe₃O₄-NCs. A good linear relationship was found between the ECL intensity and the increased BPA concentration within 0.01⁻5.0 mg/L, with a correlation coefficient of 0.9972. The detection limit was 0.66 × 10-3 mg/L. Good recoveries between 96.0% and 105.0% with a relative standard deviation of less than 4.8% were obtained in real water samples. The proposed ECL sensor can be successfully employed to BPA detection in environmental aqueous samples.
Collapse
|
19
|
Wu Y, Li X, Tan X, Feng D, Yan J, Zhang H, Chen X, Huang Z, Han H. A cyclic catalysis enhanced electrochemiluminescence aptasensor based 3D graphene/photocatalysts Cu2O-MWCNTs. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Chen Y, Zhang Y, Kou Q, Liu Y, Han D, Wang D, Sun Y, Zhang Y, Wang Y, Lu Z, Chen L, Yang J, Xing SG. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe₃O₄-Au Magnetic Nanocomposite Interface Engineering: From Facile Preparation to Recyclable Application. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E353. [PMID: 29789457 PMCID: PMC5977367 DOI: 10.3390/nano8050353] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023]
Abstract
In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe₃O₄-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe₃O₄ hollow microspheres and Fe₃O₄-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe₃O₄-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe₃O₄ hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe₃O₄-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe₃O₄-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe₃O₄-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level.
Collapse
Affiliation(s)
- Yue Chen
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yuanyuan Zhang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qiangwei Kou
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yang Liu
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Dandan Wang
- Technology Development Department, GLOBALFOUNDRIES (Singapore) Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406, Singapore.
| | - Yantao Sun
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yongjun Zhang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yaxin Wang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Ziyang Lu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lei Chen
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Scott Guozhong Xing
- United Microelect Corp. Ltd., 3 Pasir Ris Dr 12, Singapore 519528, Singapore.
| |
Collapse
|
21
|
Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1. Biosens Bioelectron 2018; 101:290-296. [DOI: 10.1016/j.bios.2017.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
22
|
Li HL, Wang F, Ge QM, Qiu F, Cong H, Tao Z. The recognition and electrochemiluminescence response of benzo[6]urils to polycyclic aromatic hydrocarbons. NEW J CHEM 2018. [DOI: 10.1039/c8nj03725f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrochemiluminescence of benzo[6]urils was discovered and applied for molecular recognition based on the host–guest interactions with polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Hai-Ling Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Fang Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Fei Qiu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|