1
|
Xie X, Briega-Martos V, Alemany P, Mohandas Sandhya AL, Skála T, Rodríguez MG, Nováková J, Dopita M, Vorochta M, Bruix A, Cherevko S, Neyman KM, Matolínová I, Khalakhan I. Balancing Activity and Stability through Compositional Engineering of Ternary PtNi-Au Alloy ORR Catalysts. ACS Catal 2025; 15:234-245. [PMID: 39781331 PMCID: PMC11705540 DOI: 10.1021/acscatal.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability. A systematic comparative analysis of the activity-stability relationship for compositionally tuned PtNi-Au model layers, prepared by magnetron co-sputtering, was conducted using a diverse range of complementary characterization techniques and electrochemistry, supported by density functional theory calculations. Our study reveals that a progressive increase of the Au concentration in the Pt50Ni50 alloy from 3 to 15 at % leads to opposing catalyst activity and stability trends. Specifically, we observe a decrease in the ORR activity accompanied by an increase in catalyst stability, manifested in the suppression of both Pt and Ni dissolution. Despite the reduced activity compared to PtNi, the PtNi-Au alloy with 15 at % Au still exhibits nearly three times the activity of monometallic Pt. It also demonstrates a significantly improved dissolution stability relative to that of the PtNi alloy and even monometallic Pt. These findings provide valuable insights into the intricate balance between activity and stability in multimetallic ORR catalysts, paving the way for the design of cost-effective and durable materials for PEMFCs.
Collapse
Affiliation(s)
- Xianxian Xie
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Valentín Briega-Martos
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Pere Alemany
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Athira Lekshmi Mohandas Sandhya
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Miquel Gamón Rodríguez
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Jaroslava Nováková
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Milan Dopita
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Michael Vorochta
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Serhiy Cherevko
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Iva Matolínová
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| |
Collapse
|
2
|
Zhao W, Xu G, Dong W, Zhang Y, Zhao Z, Qiu L, Dong J. Progress and Perspective for In Situ Studies of Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300550. [PMID: 37097627 DOI: 10.1002/advs.202300550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Indexed: 06/15/2023]
Abstract
Proton exchange membrane fuel cell (PEMFC) is one of the most promising energy conversion devices with high efficiency and zero emission. However, oxygen reduction reaction (ORR) at the cathode is still the dominant limiting factor for the practical development of PEMFC due to its sluggish kinetics and the vulnerability of ORR catalysts under harsh operating conditions. Thus, the development of high-performance ORR catalysts is essential and requires a better understanding of the underlying ORR mechanism and the failure mechanisms of ORR catalysts with in situ characterization techniques. This review starts with the introduction of in situ techniques that have been used in the research of the ORR processes, including the principle of the techniques, the design of the in situ cells, and the application of the techniques. Then the in situ studies of the ORR mechanism as well as the failure mechanisms of ORR catalysts in terms of Pt nanoparticle degradation, Pt oxidation, and poisoning by air contaminants are elaborated. Furthermore, the development of high-performance ORR catalysts with high activity, anti-oxidation ability, and toxic-resistance guided by the aforementioned mechanisms and other in situ studies are outlined. Finally, the prospects and challenges for in situ studies of ORR in the future are proposed.
Collapse
Affiliation(s)
- Wenhui Zhao
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Guangtong Xu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Wenyan Dong
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Yiwei Zhang
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Zipeng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Limei Qiu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Hursán D, Janáky C. Operando characterization of continuous flow CO 2 electrolyzers: current status and future prospects. Chem Commun (Camb) 2023; 59:1395-1414. [PMID: 36655495 PMCID: PMC9894021 DOI: 10.1039/d2cc06065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The performance of continuous-flow CO2 electrolyzers has substantially increased in recent years, achieving current density and selectivity (particularly for CO production) meeting the industrial targets. Further improvement is, however, necessary in terms of stability and energy efficiency, as well as in high-value multicarbon product formation. Accelerating this process requires deeper understanding of the complex interplay of chemical-physical processes taking place in CO2 electrolyzer cells. Operando characterization can provide these insights under working conditions, helping to identify the reasons for performance losses. Despite this fact, only relatively few studies have taken advantage of such methods up to now, applying operando techniques to characterize practically relevant CO2 electrolyzers. These studies include X-ray absorption- and Raman spectroscopy, fluorescent microscopy, scanning probe techniques, mass spectrometry, and radiography. Their objective was to characterize the catalyst structure, its microenviroment, membrane properties, etc., and relate them to the device performance (reaction rates and product distribution). Here we review the current state-of-the-art of operando methods, associated challenges, and also their future potential. We aim to motivate researchers to perform operando characterization in continuous-flow CO2 electrolyzers, to understand the reaction mechanism and device operation under practically relevant conditions, thereby advancing the field towards industrialization.
Collapse
Affiliation(s)
- Dorottya Hursán
- University of Szeged, Department of Physical Chemistry and Materials ScienceAradi sq. 1Szeged6720Hungary
| | - Csaba Janáky
- University of Szeged, Department of Physical Chemistry and Materials ScienceAradi sq. 1Szeged6720Hungary
| |
Collapse
|
5
|
Ma P, Liu Y, Tian Y, Ma L. Potential dependent friction: role of interfacial hydrated molecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Pulse-electrodeposition of PtNi nanoparticles on a novel substrate of multi-walled carbon nanotubes/poly(eriochrome blue-black B) as an active and durable catalyst for the electrocatalytic oxidation of methanol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Gao T, Duan P, Zhang Q, Yuan S. Application of One-Dimensional Nanomaterials in Catalysis at the Single-Molecule and Single-Particle Scale. Front Chem 2022; 9:812287. [PMID: 34976957 PMCID: PMC8718916 DOI: 10.3389/fchem.2021.812287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
The morphology of nanomaterials has a great influence on the catalytic performance. One-dimensional (1D) nanomaterials have been widely used in the field of catalysis due to their unique linear morphology with large specific surface area, high electron-hole separation efficiency, strong light absorption capacity, plentiful exposed active sites, and so on. In this review, we summarized the recent progress of 1D nanomaterials by focusing on the applications in photocatalysis and electrocatalysis. We highlighted the advanced characterization techniques, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), surface photovoltage microscopy (SPVM), single-molecule fluorescence microscopy (SMFM), and a variety of combined characterization methods, which have been used to identify the catalytic action of active sites and reveal the mechanism of 1D nanomaterials. Finally, the challenges and future directions of the research on the catalytic mechanism of single-particle 1D nanomaterials are prospected. To our best knowledge, there is no review on the application of single-molecule or single-particle characterization technology to 1D nanomaterial catalysis at present. This review provides a systematic introduction to the frontier field and opens the way for the 1D nanomaterial catalysis.
Collapse
Affiliation(s)
- Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.,College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Bogar M, Yakovlev Y, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H, Khalakhan I. Interplay Among Dealloying, Ostwald Ripening, and Coalescence in Pt XNi 100–X Bimetallic Alloys under Fuel-Cell-Related Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Marco Bogar
- CERIC-ERIC c/o Elettra Synchrotron, S.S. 14 Km 163.5, 34149 Trieste, Italy
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Yurii Yakovlev
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| | - Daniel John Seale Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Iva Matolínová
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| | - Heinz Amenitsch
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Ivan Khalakhan
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| |
Collapse
|
9
|
Wang X, Wang YQ, Feng YC, Wang D, Wan LJ. Insights into electrocatalysis by scanning tunnelling microscopy. Chem Soc Rev 2021; 50:5832-5849. [PMID: 34027957 DOI: 10.1039/d0cs01078b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanism of electrocatalytic reaction is important for the design and development of highly efficient electrocatalysts for energy technology. Investigating the surface structures of electrocatalysts and the surface processes in electrocatalytic reactions at the atomic and molecular scale is helpful to identify the catalytic role of active sites and further promotes the development of emerging electrocatalysts. Since it was invented, scanning tunnelling microscopy (STM) has become a powerful technique to investigate surface topographies and electronic properties at the nanoscale resolution. STM can be operated in diversified environments. Electrochemical STM can be used to investigate the surface processes during electrochemical reactions. Moreover, the critical intermediates in catalysis on catalyst surfaces can be identified by STM at low temperature or ultrahigh vacuum. STM has been extensively utilized in electrocatalysis research, including the structure-activity relationship of electrocatalysts, the distribution of active sites, and surface processes in electrocatalytic reactions. In this review, progress in the application of STM in electrocatalysis is systematically discussed. The construction of model electrocatalysts and electrocatalytic systems are summarized. Then, we present the STM investigation of electrocatalyst structures and surface processes related to electrocatalysis. Challenges and future developments in the field are discussed in the outlook.
Collapse
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chen Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Khalakhan I, Bogar M, Vorokhta M, Kúš P, Yakovlev Y, Dopita M, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H. Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17602-17610. [PMID: 32191029 DOI: 10.1021/acsami.0c02083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.
Collapse
Affiliation(s)
- Ivan Khalakhan
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Marco Bogar
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
- CERIC-ERIC c/o Elettra Synchrotron, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Mykhailo Vorokhta
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Peter Kúš
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Yurii Yakovlev
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Milan Dopita
- Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Daniel John Seale Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Heinz Amenitsch
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
11
|
Atomic force microscopy - Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135472] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Brown R, Vorokhta M, Khalakhan I, Dopita M, Vonderach T, Skála T, Lindahl N, Matolínová I, Grönbeck H, Neyman KM, Matolín V, Wickman B. Unraveling the Surface Chemistry and Structure in Highly Active Sputtered Pt 3Y Catalyst Films for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4454-4462. [PMID: 31869200 DOI: 10.1021/acsami.9b17817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum is the most widely used and best performing sole element for catalyzing the oxygen reduction reaction (ORR) in low-temperature fuel cells. Although recyclable, there is a need to reduce the amount used in current fuel cells for their extensive uptake in society. Alloying platinum with rare-earth elements such as yttrium can provide an increase in activity of more than seven times, reducing the amount of platinum and the total amount of catalyst material required for the ORR. As yttrium is easily oxidized, exposure of the Pt-Y catalyst layer to air causes the formation of an oxide layer that can be removed during acid treatment, leaving behind a highly active pure platinum overlayer. This paper presents an investigation of the overlayer composition and quality of Pt3Y films sputtered from an alloy target. The Pt3Y catalyst surface is investigated using synchrotron radiation X-ray photoelectron spectroscopy before and after acid treatment. A new substoichiometric oxide component is identified. The oxide layer extends into the alloy surface, and although it is not completely removed with acid treatment, the catalyst still achieves the expected high ORR activity. Other surface-sensitive techniques show that the sputtered films are smooth and bulk X-ray diffraction reveals many defects and high microstrain. Nevertheless, sputtered Pt3Y exhibits a very high activity regardless of the film's oxide content and imperfections, highlighting Pt3Y as a promising catalyst. The obtained results will help to support its integration into fuel cell systems.
Collapse
Affiliation(s)
- Rosemary Brown
- Chemical Physics, Department of Physics , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics , Charles University , V Holešovičkách 2 , 180 00 Prague 8 , Czech Republic
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics , Charles University , V Holešovičkách 2 , 180 00 Prague 8 , Czech Republic
| | - Milan Dopita
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 5 , 121 16 Prague , Czech Republic
| | - Thomas Vonderach
- Section for Surface Physics and Catalysis, Department of Physics , Technical University of Denmark , Lyngby 2800 , Denmark
| | - Tomáš Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics , Charles University , V Holešovičkách 2 , 180 00 Prague 8 , Czech Republic
| | - Niklas Lindahl
- Chemical Physics, Department of Physics , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics , Charles University , V Holešovičkách 2 , 180 00 Prague 8 , Czech Republic
| | - Henrik Grönbeck
- Chemical Physics, Department of Physics , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional , Universitat de Barcelona , 08028 Barcelona , Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats) , 08010 Barcelona , Spain
| | - Vladimír Matolín
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics , Charles University , V Holešovičkách 2 , 180 00 Prague 8 , Czech Republic
| | - Björn Wickman
- Chemical Physics, Department of Physics , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| |
Collapse
|
13
|
Li W, Lin R, Yang Y. One simple method to mitigate the structure degradation of alloy catalyst layer in PEMFC. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Khalakhan I, Choukourov A, Vorokhta M, Kúš P, Matolínová I, Matolín V. In situ electrochemical AFM monitoring of the potential-dependent deterioration of platinum catalyst during potentiodynamic cycling. Ultramicroscopy 2018; 187:64-70. [DOI: 10.1016/j.ultramic.2018.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
15
|
Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M, Kovács G, Aleksandrov HA, Neyman KM, Matolín V, Libuda J. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|