1
|
Zhang Y, Peng X, Gao F. Insights in Electrochemical Determination of Quercetin in Peach Vinegar by the Hexagonal Platinum Nanocrystal. ACS OMEGA 2024; 9:1850-1857. [PMID: 38222573 PMCID: PMC10785628 DOI: 10.1021/acsomega.3c08513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Peach vinegar is a popular condiment that is thought to have various health benefits. However, the low levels of quercetin and complex detection environment in peach vinegar make it difficult to detect using traditional methods. Electrochemical detection is a promising solution because it is sensitive, inexpensive, and provides real-time results. Herein, a hexagonal Pt nanocrystal was developed as an electrocatalyst for selective detection of quercetin in peach vinegar, and a comprehensive examination was given of the electrochemical characteristics of quercetin when applied to electrodes modified with platinum. The morphology and crystal properties of Pt nanocrystals were analyzed, and the Pt-modified electrode was found to exhibit strong electrocatalytic effects toward quercetin in peach vinegar with a high sensitivity of 58 μA μM-1. Furthermore, the investigation showcased exceptional specificity, consistency, sustained durability, and replicability of the Pt-modified electrode in identifying quercetin. The detection result of the Pt-modified electrode tested in three different peach vinegar samples demonstrated its practical utility in real-world applications. Overall, the findings of this study may have important implications for the development of more efficient and sensitive electrochemical sensors for the detection of quercetin and other analytes in vinegar.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Xilin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Feng Gao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| |
Collapse
|
2
|
Zheng S, Liu T, Zhang N, Li L, Zhu Y, Zhang E, Tang J, Guo J. A 3D flower-like Co/Ni bimetallic organic framework as an excellent material for electrochemical determination of quercetin. NEW J CHEM 2023. [DOI: 10.1039/d2nj06370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A scheme of the fabrication of 3D flower-like CoNi-MOF nanosheets and their application in electrocatalytic oxidation of quercetin.
Collapse
|
3
|
Tajik S, Dourandish Z, Nejad FG, Beitollahi H, Jahani PM, Di Bartolomeo A. Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors. Biosens Bioelectron 2022; 216:114674. [DOI: 10.1016/j.bios.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
4
|
Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Mikrochim Acta 2022; 189:318. [PMID: 35931898 DOI: 10.1007/s00604-022-05403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Antioxidants are healthy substances that are beneficial to the human body and exist mainly in natural and synthetic forms. Among many kinds of antioxidants, the natural antioxidants have great applications in many fields such as food chemistry, medical care, and clinical application. In recent years, many efforts have been made for the determination of natural antioxidants. Nano-electrochemical sensors combining electrochemistry and nanotechnology have been widely used in the determination of natural antioxidants due to their unique advantages. Therefore, a large number of nanomaterials such as metal oxide, carbon materials, and conducting polymer have attracted much attention in the field of electrochemical sensors due to their good catalytic effect and stable performance. This review mainly introduces the construction of electrochemical sensors based on different nanomaterials, such as metallic nanomaterials, metal oxide nanomaterials, carbon nanomaterials, metal-organic frameworks, polymer nanomaterials, and other nanocomposites, and their application to the detection of natural antioxidants, including ascorbic acid, phenolic acids, flavonoid, tryptophan, citric acid, and other natural antioxidants. In the end, the limitations of the existing nano-sensing technology, the latest development trend, and the application prospect for various natural antioxidant substances are summarized and analyzed. We expect that this review will be helpful to researchers engaged in electrochemical sensors.
Collapse
|
5
|
Karuppusamy N, Mariyappan V, Chen SM, Keerthi M, Ramachandran R. A simple electrochemical sensor for quercetin detection based on cadmium telluride nanoparticle incorporated on boron, sulfur co-doped reduced graphene oxide composite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00956-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Sun Y, Wang B, He X, Wang Y, Chen L, Zhu Y, Li G, Sun W. Fabrication of a Ti 3C 2T x modified glassy carbon electrode for the sensitive electrochemical detection of quercetin. NEW J CHEM 2021. [DOI: 10.1039/d1nj04046d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fabrication of MXene/GCE for the electrochemical determination of quercetin.
Collapse
Affiliation(s)
- Yunxiu Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Baoli Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoli He
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yitong Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lin Chen
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuxin Zhu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
8
|
Hu J, Zhang Z. Application of Electrochemical Sensors Based on Carbon Nanomaterials for Detection of Flavonoids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2020. [PMID: 33066360 PMCID: PMC7602283 DOI: 10.3390/nano10102020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Flavonoids have a variety of physiological activities such as anti-free radicals, regulating hormone levels, antibacterial factors, and anti-cancer factors, which are widely present in edible and medicinal plants. Real-time detection of flavonoids is a key step in the quality control of diverse matrices closely related to social, economic, and health issues. Traditional detection methods are time-consuming and require expensive equipment and complicated working conditions. Therefore, electrochemical sensors with high sensitivity and fast detection speed have aroused extensive research interest. Carbon nanomaterials are preferred material in improving the performance of electrochemical sensing. In this paper, we review the progress of electrochemical sensors based on carbon nanomaterials including carbon nanotubes, graphene, carbon and graphene quantum dots, mesoporous carbon, and carbon black for detecting flavonoids in food and drug homologous substances in the last four years. In addition, we look forward to the prospects and challenges of this research field.
Collapse
Affiliation(s)
| | - Zhenguo Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| |
Collapse
|
9
|
Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron modified electrode for electrochemical determination of quercetin. Mikrochim Acta 2020; 187:546. [PMID: 32886168 DOI: 10.1007/s00604-020-04531-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
A core-shell ZIF-8@ZIF-67 was synthesized and pyrolyzed to get a Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron (Co@NCNHP). Then Au nanoparticles were formed on the surface and core of Co@NCNHP to obtain an Au-Co bimetal decorated NCNHP (Au-Co@NCNHP). The resultant nanocomposite was characterized by various methods including transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The Au-Co@NCNHP-based electrochemical sensor displayed an obviously high electrocatalytic response to the oxidation of quercetin, which was attributed to the synergistic effects of Au-Co bimetal nanoparticles and N-doped carbon nanotube with hollow polyhedron. Under the optimal conditions, the oxidation peak currents exhibited a wide linear dynamic range for quercetin concentration from 0.050 to 35.00 μmol/L, and the detection limit was 0.023 ± 0.002 μmol/L (S/N = 3). The analytical applications of the proposed electrochemical sensor were checked by determining the content of quercetin in medical and onion samples with satisfactory results. Grapical abstract.
Collapse
|
10
|
Rojas D, Della Pelle F, Del Carlo M, Compagnone D, Escarpa A. Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Hu X, Wang C, Zhang M, Zhao F, Zeng B. Ionic liquid assisted molecular self-assemble and molecular imprinting on gold nanoparticles decorated boron-doped ordered mesoporous carbon for the detection of zearalenone. Talanta 2020; 217:121032. [PMID: 32498821 DOI: 10.1016/j.talanta.2020.121032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 01/05/2023]
Abstract
Accurate and early diagnosis of zearalenone (ZEN) is particularly significant to the food safety. Herein, we propose an ionic liquid assisted self-assembly molecular imprinting strategy for ZEN based on ionic liquid functionalized boron-doped ordered mesoporous carbon -gold nanoparticles composite (BOMC-IL-Au NPs). During the composite synthesis, increased well-dispersed and uniform Au NPs are deposited on the surface of IL modified BOMC, due to the strong electrostatic interaction between AuCl4- and positively charged IL. For molecular imprinting, the BOMC-IL-Au NPs/GCE is immersed into p-aminothiophenol (p-ATP) solution and template solution in turn. Thus, the mercapto group contained p-ATP self-assembles on the Au NPs. Subsequently, the template molecules self-assemble onto the composite to form dense template layer, because of the hydrophobic interaction, π-π and hydrogen bond between template and IL/or p-ATP. After electropolymerization, the template layer is embedded into the p-ATP polymer membrane and produces lots of imprinting sites. Hence, the obtained sensor exhibits high sensitivity and selectivity. Under the optimal conditions, zearalenone can be quantified from 5 × 10-4 to 1 ng mL-1 with the low detection limit of 1 × 10-4 ng mL-1, by using [Fe(CN)6]3-/4- probe and square wave voltammetry. This strategy can also be employed to construct sensors for the detection of other substances.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Caiyun Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Meng Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China.
| |
Collapse
|
13
|
Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Mikrochim Acta 2020; 187:130. [PMID: 31938866 DOI: 10.1007/s00604-019-4106-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Thiolated β-cyclodextrin functionalized gold nanoparticles (Au-β-CDs) with layered wrinkled flower structure were prepared. Au-β-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1-210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results. Graphical abstractSchematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-β-CD/GCE).
Collapse
|
14
|
Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2–boron for the voltammetric determination of theophylline. Mikrochim Acta 2019; 186:694. [DOI: 10.1007/s00604-019-3824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
15
|
Liu X, Tang Y, Liu P, Yang L, Li L, Zhang Q, Zhou Y, Khan MZH. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy. Analyst 2019; 144:1671-1678. [PMID: 30652696 DOI: 10.1039/c8an01971a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, a sensitive and selective electrochemical aptasensor for determination of microcystin-LR (MC-LR) was developed based on a dual signal amplification system consisting of a novel ternary composite and horseradish peroxidase (HRP). The ternary composite was prepared by depositing gold nanoparticles (AuNPs) on molybdenum disulfide (MoS2) covered TiO2 nanobeads (TiONBs). MoS2 nanosheet modified TiONBs provided a large surface area for immobilization of AuNPs and biomolecules. The ternary composite also possesses an improved electron transfer and catalytic capability. To construct the aptasensor, thiolated MC-LR aptamers were immobilized on the AuNP@MoS2-TiONB modified electrode through a gold-sulfur bond. Then, biotin-cDNA with a sequence complementary to the MC-LR aptamer competed with MC-LR for binding to the immobilized aptamer. The current signal catalyzed by avidin-HRP decreased with the increase of MC-LR, based on which a linear range of 0.005-30 nM and a detection limit of 0.002 nM were obtained.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province 475004, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim Acta 2019; 186:203. [PMID: 30796594 DOI: 10.1007/s00604-019-3287-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
The primary objective of this review article is to summarize the development and structural diversity of 2D/3D molybdenum disulfide (MoS2) based modified electrodes for electrochemical sensors and biosensor applications. Hydrothermal, mechanical, and ultrasonic techniques and solution-based exfoliation have been used to synthesize graphene-like 2D MoS2 layers. The unique physicochemical properties of MoS2 and its nanocomposites, including high mechanical strength, high carrier transport, large surface area, excellent electrical conductivity, and rapid electron transport rate, render them useful as efficient transducers in various electrochemical applications. The present review summarizes 2D/3D MoS2-based nanomaterials as an electrochemical platform for the detection and analysis of various biomolecules (e.g., neurotransmitters, NADH, glucose, antibiotics, DNA, proteins, and bacteria) and hazardous chemicals (e.g., heavy metal ions, organic compounds, and pesticides). The substantial improvements that have been achieved in the performance of enzyme-based amperometry, chemiluminescence, and nucleic acid sensors incorporating MoS2-based chemically modified electrodes are also addressed. We also summarize key sensor parameters such as limits of detection (LODs), sensitivity, selectivity, response time, and durability, as well as real applications of the sensing systems in the environmental, pharmaceutical, chemical, industrial, and food analysis fields. Finally, the remaining challenges in designing MoS2 nanostructures suitable for electroanalytical applications are outlined. Graphical abstract • MoS2 based materials exhibit high conductivity and improved electrochemical performance with great potential as a sensing electrode. • The role of MoS2 nanocomposite films and their detection strategies were reviewed. • Biomarkers detection for disease identification and respective clinical treatments were discussed. • Future Challenges, as well as possible research development for "MoS2 nanocomposites", are suggested.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Bose Dinesh
- Center for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Uma Maheswari Krishnan
- Center for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
17
|
Li R, Zhou Z, Chen J, Wang S, Zheng J, Chu C, Zhao J, Fan H, Han D. The improved hydrodechlorination catalytic reactions by concerted efforts of ionic liquid and activated carbon support. NEW J CHEM 2019. [DOI: 10.1039/c9nj00273a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modified and stabilized palladium nanoparticles were prepared successfully by using an ionic liquid, 1-butyl-3-methylimidazolium trifluoroacetate.
Collapse
Affiliation(s)
- Rongrong Li
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Zehua Zhou
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Jingjing Chen
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Shiting Wang
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Jianli Zheng
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Chu Chu
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| | - Jia Zhao
- Industrial Catalysis Institute of Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Huajun Fan
- Department of Chemistry
- Prairie View A&M University
- Prairie View
- USA
| | - Deman Han
- School of Pharmaceutical and Materials Engineering
- TaiZhou University
- Taizhou
- P. R. China
| |
Collapse
|
18
|
Kim E, Kang H, Choi I, Song J, Mok H, Jung W, Yeo WS. Efficient Enrichment and Analysis of Vicinal-Diol-Containing Flavonoid Molecules Using Boronic-Acid-Functionalized Particles and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4741-4747. [PMID: 29688715 DOI: 10.1021/acs.jafc.8b00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Woong Jung
- Department of Emergency Medicine , Kyung Hee University Hospital at Kangdong , Seoul 05278 , Korea
| | | |
Collapse
|
19
|
Electrochemical determination of luteolin using molecularly imprinted poly-carbazole on MoS2/graphene-carbon nanotubes nanocomposite modified electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1863. [PMID: 28800106 PMCID: PMC5579580 DOI: 10.3390/s17081863] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France.
| |
Collapse
|