1
|
Hengge E, Steyskal EM, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2024:e2400844. [PMID: 39300852 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Manfred Nachtnebel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, Graz, 8010, Austria
| |
Collapse
|
2
|
Al‐Shaibani MAS, Sakoleva T, Živković LA, Austin HP, Dörr M, Hilfert L, Haak E, Bornscheuer UT, Vidaković‐Koch T. Product Distribution of Steady-State and Pulsed Electrochemical Regeneration of 1,4-NADH and Integration with Enzymatic Reaction. ChemistryOpen 2024; 13:e202400064. [PMID: 38607952 PMCID: PMC11319214 DOI: 10.1002/open.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The direct electrochemical reduction of nicotinamide adenine dinucleotide (NAD+) results in various products, complicating the regeneration of the crucial 1,4-NADH cofactor for enzymatic reactions. Previous research primarily focused on steady-state polarization to examine potential impacts on product selectivity. However, this study explores the influence of dynamic conditions on the selectivity of NAD+ reduction products by comparing two dynamic profiles with steady-state conditions. Our findings reveal that the main products, including 1,4-NADH, several dimers, and ADP-ribose, remained consistent across all conditions. A minor by-product, 1,6-NADH, was also identified. The product distribution varied depending on the experimental conditions (steady state vs. dynamic) and the concentration of NAD+, with higher concentrations and overpotentials promoting dimerization. The optimal yield of 1,4-NADH was achieved under steady-state conditions with low overpotential and NAD+ concentrations. While dynamic conditions enhanced the 1,4-NADH yield at shorter reaction times, they also resulted in a significant amount of unidentified products. Furthermore, this study assessed the potential of using pulsed electrochemical regeneration of 1,4-NADH with enoate reductase (XenB) for cyclohexenone reduction.
Collapse
Affiliation(s)
- Mohammed Ali Saif Al‐Shaibani
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| | - Thaleia Sakoleva
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Luka A. Živković
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| | - Harry P. Austin
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Liane Hilfert
- Institute of ChemistryOtto von Guericke UniversityUniversitätsplatz 239106MagdeburgGermany
| | - Edgar Haak
- Institute of ChemistryOtto von Guericke UniversityUniversitätsplatz 239106MagdeburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Tanja Vidaković‐Koch
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| |
Collapse
|
3
|
Liu H, Sun R, Yang Y, Zhang C, Zhao G, Zhang K, Liang L, Huang X. Review on Microreactors for Photo-Electrocatalysis Artificial Photosynthesis Regeneration of Coenzymes. MICROMACHINES 2024; 15:789. [PMID: 38930759 PMCID: PMC11205774 DOI: 10.3390/mi15060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In recent years, with the outbreak of the global energy crisis, renewable solar energy has become a focal point of research. However, the utilization efficiency of natural photosynthesis (NPS) is only about 1%. Inspired by NPS, artificial photosynthesis (APS) was developed and utilized in applications such as the regeneration of coenzymes. APS for coenzyme regeneration can overcome the problem of high energy consumption in comparison to electrocatalytic methods. Microreactors represent a promising technology. Compared with the conventional system, it has the advantages of a large specific surface area, the fast diffusion of small molecules, and high efficiency. Introducing microreactors can lead to more efficient, economical, and environmentally friendly coenzyme regeneration in artificial photosynthesis. This review begins with a brief introduction of APS and microreactors, and then summarizes research on traditional electrocatalytic coenzyme regeneration, as well as photocatalytic and photo-electrocatalysis coenzyme regeneration by APS, all based on microreactors, and compares them with the corresponding conventional system. Finally, it looks forward to the promising prospects of this technology.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Rui Sun
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, China;
| | - Yujing Yang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Chuanhao Zhang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Gaozhen Zhao
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Lijuan Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowen Huang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| |
Collapse
|
4
|
Tian S, Long G, Zhou P, Liu F, Zhang X, Ding C, Li C. A Coupled System of Ni 3S 2 and Rh Complex with Biomimetic Function for Electrocatalytic 1,4-NAD(P)H Regeneration. J Am Chem Soc 2024; 146:15730-15739. [PMID: 38776525 DOI: 10.1021/jacs.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
NAD(P)H cofactor is a critical energy and electron carrier in biocatalysis and photosynthesis, but the artificial reduction of NAD(P)+ to regenerate bioactive 1,4-NAD(P)H with both high activity and selectivity is challenging. Herein, we found that a coupled system of a Ni3S2 electrode and a Rh complex in an electrolyte (denoted as Ni3S2-Rh) can catalyze the reduction of NAD(P)+ to 1,4-NAD(P)H with superior activity and selectivity. The optimized selectivity in 1,4-NADH can be up to 99.1%, much higher than that for Ni3S2 (80%); the normalized activity of Ni3S2-Rh is about 5.8 times that of Ni3S2 and 13.2 times that of the Rh complex. The high performance of Ni3S2-Rh is attributed to the synergistic effect between metal sulfides and Rh complex. The NAD+ reduction reaction proceeds via a concerted electron-proton transfer (CEPT) mechanism in the Ni3S2-Rh system, in which Ni3S2 acts as a proton and electron-transfer mediator to accelerate the formation of Rh hydride (Rh-H), and then the Rh-H regioselectively transfers the hydride to NAD+ to form 1,4-NADH. The artificial system Ni3S2-Rh essentially mimics the functions of ferredoxin-NADP+ reductase in nature.
Collapse
Affiliation(s)
- Shujie Tian
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyuan Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianwen Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Besisa NHA, Yoon KS, Yamauchi M. In situ electrochemical regeneration of active 1,4-NADH for enzymatic lactic acid formation via concerted functions on Pt-modified TiO 2/Ti. Chem Sci 2024; 15:3240-3248. [PMID: 38425536 PMCID: PMC10901512 DOI: 10.1039/d3sc04104b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are key cofactors serving as essential hydrogen acceptors and donors to facilitate energy and material conversions under mild conditions. We demonstrate direct electrochemical conversion to achieve highly efficient regeneration of enzymatically active 1,4-NADH using a Pt-modified TiO2 catalyst grown directly on a Ti mesh electrode (Pt-TOT). Spectral analyses revealed that defects formed by the inclusion of Pt species in the lattice of TiO2 play a critical role in the regeneration process. In particular, Pt-TOT containing approximately 3 atom% of Pt exhibited unprecedented efficiency in the electrochemical reduction of NAD+ at the lowest overpotential to date. This exceptional performance led to the production of active 1,4-NADH with a significantly high yield of 86 ± 3% at -0.6 V vs. Ag/AgCl (-0.06 V vs. RHE) and an even higher yield of 99.5 ± 0.4% at a slightly elevated negative potential of -0.8 V vs. Ag/AgCl (-0.2 V vs. RHE). Furthermore, the electrochemically generated NADH was directly applied in the enzymatic conversion of pyruvic acid to lactic acid using lactate dehydrogenase.
Collapse
Affiliation(s)
- Nada H A Besisa
- Department of Chemistry, Graduate School of Science, Kyushu University Fukuoka 819-0395 Japan
| | - Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University Fukuoka 819-0395 Japan
| | - M Yamauchi
- Department of Chemistry, Graduate School of Science, Kyushu University Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University Fukuoka 819-0395 Japan
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University Fukuoka 819-0395 Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Miyagi Japan
- Research Center for Negative Emissions Technologies (K-Nets), Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
6
|
Meyer J, Romero M, Thöming J, Baune M, Reimer N, Dringen R, Bösing I. Experimental insights into electrocatalytic [Cp*Rh(bpy)Cl] + mediated NADH regeneration. Sci Rep 2023; 13:22394. [PMID: 38104175 PMCID: PMC10725497 DOI: 10.1038/s41598-023-49021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
NADH plays a crucial role in many enzymatically catalysed reactions. Due to the high costs of NADH a regeneration mechanism of this cofactor can enlarge the applications of enzymatic reactions dramatically. This paper gives a thorough system analysis of the mediated electrochemical regeneration of active NADH using cyclic voltammograms and potentiostatic measurements with varying pH, electrode potential, and electrolyte solution, highlighting the system's limiting conditions, elucidating optimal working parameters for the electrochemical reduction of NAD+, and bringing new insight on the oxidation of inactive reduction products. Using [Cp*Rh(bpy)Cl]+ as an electron mediator dramatically increases the percentage of enzymatically active electrochemically reduced NADH from 15% (direct) to 99% (mediated) with a faradaic efficiency of up to 86%. Furthermore, investigations of the catalytic mechanisms of [Cp*Rh(bpy)Cl]+ clarifies the necessary conditions for its functioning and questions the proposed reaction mechanism by two-step reduction where first the mediator is reduced and then brought in contact with NAD+.
Collapse
Affiliation(s)
- Jonas Meyer
- Chemical Process Engineering Group (CVT), Leobener Strasse 6, 28359, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Manuela Romero
- Chemical Process Engineering Group (CVT), Leobener Strasse 6, 28359, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Jorg Thöming
- Chemical Process Engineering Group (CVT), Leobener Strasse 6, 28359, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Michael Baune
- Chemical Process Engineering Group (CVT), Leobener Strasse 6, 28359, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Nicholas Reimer
- Centre for Biomolecular Interactions Bremen (CBIB), Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Ingmar Bösing
- Chemical Process Engineering Group (CVT), Leobener Strasse 6, 28359, Bremen, Germany.
- University of Bremen, Bremen, Germany.
| |
Collapse
|
7
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
8
|
Barin R, Biria D, Ali Asadollahi M. Nicotinamide adenine dinucleotide hydrogen regeneration in a microbial electrosynthesis system by Enterobacter aerogenes. Bioelectrochemistry 2023; 149:108309. [DOI: 10.1016/j.bioelechem.2022.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022]
|
9
|
Liu F, Ding C, Tian S, Lu SM, Feng C, Tu D, Liu Y, Wang W, Li C. Electrocatalytic NAD + reduction via hydrogen atom-coupled electron transfer. Chem Sci 2022; 13:13361-13367. [PMID: 36507184 PMCID: PMC9682901 DOI: 10.1039/d2sc02691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide adenine dinucleotide cofactor (NAD(P)H) is regarded as an important energy carrier and charge transfer mediator. Enzyme-catalyzed NADPH production in natural photosynthesis proceeds via a hydride transfer mechanism. Selective and effective regeneration of NAD(P)H from its oxidized form by artificial catalysts remains challenging due to the formation of byproducts. Herein, electrocatalytic NADH regeneration and the reaction mechanism on metal and carbon electrodes are studied. We find that the selectivity of bioactive 1,4-NADH is relatively high on Cu, Fe, and Co electrodes without forming commonly reported NAD2 byproducts. In contrast, more NAD2 side product is formed with the carbon electrode. ADP-ribose is confirmed to be a side product caused by the fragmentation reaction of NAD+. Based on H/D isotope effects and electron paramagnetic resonance analysis, it is proposed that the formation of NADH on these metal electrodes proceeds via a hydrogen atom-coupled electron transfer (HadCET) mechanism, in contrast to the direct electron-transfer and NAD˙ radical pathway on carbon electrodes, which leads to more by-product, NAD2. This work sheds light on the mechanism of electrocatalytic NADH regeneration, which is different from biocatalysis.
Collapse
Affiliation(s)
- Fengyuan Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shujie Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengcheng Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| | - Dandan Tu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Can Li
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
11
|
Arshad F, Tahir A, Haq TU, Munir A, Hussain I, Sher F. Bubbles Templated Interconnected Porous Metallic Materials: Synthesis, Surface Modification, and their Electrocatalytic Applications for Water Splitting and Alcohols Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farhan Arshad
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Aleena Tahir
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry College of Sciences University of Sharjah P.O. Box 27272 Sharjah, UAE
| | - Akhtar Munir
- Department of Chemistry University of Sialkot Sialkot 51040 Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Falak Sher
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| |
Collapse
|
12
|
Influence of electrode potential, pH and NAD + concentration on the electrochemical NADH regeneration. Sci Rep 2022; 12:16380. [PMID: 36180530 PMCID: PMC9525651 DOI: 10.1038/s41598-022-20508-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemical NAD+ reduction is a promising method to regenerate NADH for enzymatic reactions. Many different electrocatalysts have been tested in the search for high yields of the 1,4-isomer of NADH, the active NADH, but aside from electrode material, other system parameters such as pH, electrode potential and educt concentration also play a role in NADH regeneration. The effect of these last three parameters and the mechanisms behind their influence on NADH regeneration was systematically studied and presented in this paper. With percentages of active NADH ranging from 10 to 70% and faradaic efficiencies between 1 and 30%, it is clear that all three system parameters drastically affect the reaction outcome. As a proof of principle, the NAD+ reduction in the presence of pyruvate and lactate dehydrogenase was performed. It could be shown that the electrochemical NADH regeneration can also be done successfully in parallel to enzymatically usage of the regenerated cofactor.
Collapse
|
13
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
14
|
Wu R, Yu YY, Wang Y, Wang YZ, Song H, Ma C, Qu G, You C, Sun Z, Zhang W, Li A, Li CM, Yong YC, Zhu Z. Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. iScience 2021; 24:103401. [PMID: 34841233 PMCID: PMC8605441 DOI: 10.1016/j.isci.2021.103401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
A microbial electrochemical system could potentially be applied as a biosynthesis platform by extracting wastewater energy while converting it to value-added chemicals. However, the unfavorable thermodynamics and sluggish kinetics of in vivo whole-cell cathodic catalysis largely limit product diversity and value. Herein, we convert the in vivo cathodic reaction to in vitro enzymatic catalysis and develop a microbe-enzyme hybrid bioelectrochemical system (BES), where microbes release the electricity from wastewater (anode) to power enzymatic catalysis (cathode). Three representative examples for the synthesis of pharmaceutically relevant compounds, including halofunctionalized oleic acid based on a cascade reaction, (4-chlorophenyl)-(pyridin-2-yl)-methanol based on electrochemical cofactor regeneration, and l-3,4-dihydroxyphenylalanine based on electrochemical reduction, were demonstrated. According to the techno-economic analysis, this system could deliver high system profit, opening an avenue to a potentially viable wastewater-to-profit process while shedding scientific light on hybrid BES mechanisms toward a sustainable reuse of wastewater.
Collapse
Affiliation(s)
- Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Yang-Yang Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Yuanming Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Yan-Zhai Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Chang Ming Li
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P.R. China
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| |
Collapse
|
15
|
Lee YS, Gerulskis R, Minteer SD. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Curr Opin Biotechnol 2021; 73:14-21. [PMID: 34246871 DOI: 10.1016/j.copbio.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide(NAD(P)H) is a metabolically interconnected redox cofactor serving as a hydride source for the majority of oxidoreductases, and consequently constituting a significant cost factor for bioprocessing. Much research has been devoted to the development of efficient, affordable, and sustainable methods for the regeneration of these cofactors through chemical, electrochemical, and photochemical approaches. However, the enzymatic approach using formate dehydrogenase is still the most abundantly employed in industrial applications, even though it suffers from system complexity and product purity issues. In this review, we summarize non-enzymatic and enzymatic electrochemical approaches for cofactor regeneration, then discuss recent developments to solve major issues. Issues discussed include Rh-catalyst mediated enzyme mutual inactivation, electron-transfer rates, catalyst sustainability, product selectivity and simplifying product purification. Recently reported remedies are discussed, such as heterogeneous metal catalysts generating H+ as the sole byproduct or high activity and stability redox-polymer immobilized enzymatic systems for sustainable organic synthesis.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Rokas Gerulskis
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
17
|
Immanuel S, Sivasubramanian R, Gul R, Dar MA. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH). Chem Asian J 2020; 15:4256-4270. [PMID: 33164351 DOI: 10.1002/asia.202001035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/31/2020] [Indexed: 12/14/2022]
Abstract
NAD is a cofactor that maintains cellular redox homeostasis and has immense industrial and biological significance. It acts as an enzymatic mediator in several biocatalytic electrochemical reactions and undergoes oxidation/reduction to form NAD+ or NADH, respectively. The NAD redox couple (NAD+ /NADH) mostly exists in enzyme-assisted metabolic reactions as a coenzyme during which electrons and protons are transferred. NADH shuttles these charges between the enzyme and the substrate. In order to understand such complex metabolic reactions, it is vital to study the bio-electrochemistry of NADH. In addition, the regeneration of NADH in industries has attracted significant attention due to its vast usage and high cost. To make biocatalysis economically viable, primary methods of NADH regeneration including enzymatic, chemical, photochemical and electrochemical methods are widely used. This review is mainly focused on the electrochemical reduction of NAD+ to NADH with specific details on the mechanism and kinetics of the reaction. It provides emphasis on the different routes (direct and mediated) to electrochemically regenerate NADH from NAD+ highlighting the NAD dimer formation. Also, it describes the electrocatalysts developed until now and the scope for development in this area of research.
Collapse
Affiliation(s)
- Susan Immanuel
- Electrochemical sensors and energy materials laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
| | - R Sivasubramanian
- Electrochemical sensors and energy materials laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
| | - Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saudi University, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
18
|
Lan F, Wang Q, Chen H, Chen Y, Zhang Y, Huang B, Liu H, Liu J, Li R. Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03652] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Lan
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Qin Wang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| | - Yi Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Huang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| |
Collapse
|
19
|
Saba T, Burnett JW, Li J, Wang X, Anderson JA, Kechagiopoulos PN, Wang X. Assessing the environmental performance of NADH regeneration methods: A cleaner process using recyclable Pt/Fe3O4 and hydrogen. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Song H, Ma C, Liu P, You C, Lin J, Zhu Z. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Yuan M, Kummer MJ, Milton RD, Quah T, Minteer SD. Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00513] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Matthew J. Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Timothy Quah
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Barin R, Biria D, Rashid-Nadimi S, Asadollahi MA. Enzymatic CO2 reduction to formate by formate dehydrogenase from Candida boidinii coupling with direct electrochemical regeneration of NADH. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|