1
|
Zhao L, Murrieta MF, Padilla JA, Lanzalaco S, Cabot PL, Sirés I. Bimetallic FeCu-MOF derivatives as heterogeneous catalysts with enhanced stability for electro-Fenton degradation of lisinopril. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176110. [PMID: 39265676 DOI: 10.1016/j.scitotenv.2024.176110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
A bimetallic FeCu/NC core-shell catalyst, consisting in nanoparticles where zero-valent Fe and Cu atoms, slightly oxidized on their surface, are encapsulated by carbon has been successfully prepared by modifying the synthesis route of MIL(Fe)-88B. FeCu/NC possessed well-balanced textural and electrochemical properties. According to voltammetric responses, in-situ Fe(III) reduction to Fe(II) by low-valent Cu was feasible, whereas the high double-layer capacitance confirmed the presence of a great number of electroactive sites that was essential for continuous H2O2 activation to •OH via Fenton's reaction. Electrochemical impedance and distribution of relaxation times (DRT) analysis informed about the strong leaching resistance of FeCu/NC. To validate the promising features of this catalyst, the advanced oxidation of the antihypertensive lisinopril (LSN) was investigated for the first time. The heterogeneous electro-Fenton (HEF) treatment of 16.1 mg L-1 LSN solutions was carried out in a DSA/air-diffusion cell. At pH 3, complete degradation was achieved within 6 min using only 0.05 g L-1 FeCu/NC; at near-neutral pH, 100 % removal was also feasible even in actual urban wastewater, requiring 60-75 min. The FeCu/NC catalyst demonstrated high stability, still maintaining 86.5 % of degradation efficiency after 5 cycles and undergoing low iron leaching. It outperformed the monometallic (Fe/NC and Cu/NC) catalysts, which is explained by the Cu(0)/Cu(I)-catalyzed Fe(II) regeneration mechanism that maintains the Fenton's cycle. LC-MS/MS analysis allowed the identification of two main primary LSN by-products. It can then be concluded that the FeCu/NC-based HEF process merits to be further scaled up for wastewater treatment.
Collapse
Affiliation(s)
- Lele Zhao
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María F Murrieta
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José A Padilla
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Departament d'Enginyeria Mecànica, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Pere L Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Ma Z, Wang H, Zhou Q, Liang B, Li M, Wang P, Zhan S. Energy efficient portable air cathode electrochlorinator for point-of-use disinfection of toilet wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130793. [PMID: 36731314 DOI: 10.1016/j.jhazmat.2023.130793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Active chlorine is the most widely used disinfectant for water disinfection as well as surface sterilization. Here, we report an air cathode electrochlorinator for point-of-use disinfection of toilet wastewater. The air cathode dominated by a four-electron pathway to reduce O2 to OH- was more suitable for chlorine synthesis than through a two-electron pathway to H2O2, which could reduce chlorine back to chloride ions. The minimum driving potential of the air cathode electrochlorinator was as low as 0.94 V, which made it possible to be directly powered by a piece of commercial mini photovoltaic solar panel without electronic converter. Under the cell voltage of 2 V, the Faraday current efficiency was 82.0 % and the electrical energy required to produce 1 kg active chlorine was estimated to be only 1.75 kWh. The normalized energy consumption to disinfect simulated toilet wastewater with a pathogen concentration of 107 CFU/mL was estimated to be 7.2 W h/m3. Moreover, the material cost for fabrication of the electrochlorinator was estimated to be less than $ 0.62. These features guarantee the air cathode electrochlorinator of high potential for point-of-use disinfection of toilet wastewater.
Collapse
Affiliation(s)
- Zhihui Ma
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, 300350 Tianjin, China
| | - Haitao Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China.
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, 300350 Tianjin, China
| | - Bolong Liang
- College of Ecology and Environment, Hebei University, Baoding 071002, China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China.
| |
Collapse
|
4
|
Li M, Zhu Z, Yuan S, Ji L, Zhao T, Gao Y, Wang H. Nitrogen and oxygen co-doped graphite felt gas diffusion electrodes for efficient hydrogen peroxide electrosynthesis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Lee J, Song YW, Lee H, Kim MY, Lim J. Synthesis of high-voltage cathode material using the Taylor-Couette flow-based co-precipitation method. Front Chem 2023; 11:1195170. [PMID: 37168443 PMCID: PMC10165001 DOI: 10.3389/fchem.2023.1195170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
LiNi0.5Mn1.5O4 (LNMO), a next-generation high-voltage battery material, is promising for high-energy-density and power-density lithium-ion secondary batteries. However, rapid capacity degradation occurs due to problems such as the elution of transition metals and the generation of structural distortion during cycling. Herein, a new LNMO material was synthesized using the Taylor-Couette flow-based co-precipitation method. The synthesized LNMO material consisted of secondary particles composed of primary particles with an octahedral structure and a high specific surface area. In addition, the LNMO cathode material showed less structural distortion and cation mixing as well as a high cyclability and rate performance compared with commercially available materials.
Collapse
Affiliation(s)
- Junghwan Lee
- Korea Institute of Industrial Technology (KITECH), Gwangju, Republic of Korea
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Woong Song
- Korea Institute of Industrial Technology (KITECH), Gwangju, Republic of Korea
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - HyoChan Lee
- Korea Institute of Industrial Technology (KITECH), Gwangju, Republic of Korea
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Young Kim
- Korea Institute of Industrial Technology (KITECH), Gwangju, Republic of Korea
| | - Jinsub Lim
- Korea Institute of Industrial Technology (KITECH), Gwangju, Republic of Korea
- *Correspondence: Jinsub Lim,
| |
Collapse
|
6
|
Xie F, Gao Y, Zhang J, Bai H, Zhang J, Li Z, Zhu W. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
8
|
Liu M, Feng Z, Luan X, Chu W, Zhao H, Zhao G. Accelerated Fe 2+ Regeneration in an Effective Electro-Fenton Process by Boosting Internal Electron Transfer to a Nitrogen-Conjugated Fe(III) Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6042-6051. [PMID: 33616409 DOI: 10.1021/acs.est.0c08018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The regeneration rate of Fe2+ from Fe3+ dictates the performance of the electro-Fenton (EF) process, represented by the amount of produced hydroxyl radicals (·OH). Current strategies for the acceleration of Fe2+ regeneration normally require additional chemical reagents, to vary the redox potential of Fe2+/Fe3+. Here, we report an attempt at using the intrinsic property of the electrode to our advantage, i.e., nitrogen-doped carbon aerogel (NDCA), as a reducing agent for the regeneration of Fe2+ without using foreign reagents. Moreover, the pyrrolic N in NDCA provides unpaired electrons through the carbon framework to reduce Fe3+, while the graphitic and pyridinic N coordinate with Fe3+ to form a C-O-Fe-N2 bond, facilitating electron transfer from both the external circuit and pyrrolic N to Fe3+. Our Fe2+/NDCA-EF system exhibits a 5.8 ± 0.3 times higher performance, in terms of the amount of generated ·OH, than a traditional Fenton system using the same Fe2+ concentration. In the subsequent reaction, the Fe2+/NDCA-EF system demonstrates 100.0% removal of dimethyl phthalate, 3-chlorophenol, bisphenol A, and sulfamethoxazole with a low specific energy consumption of 0.17-0.36 kW·h·g-1. Furthermore, 90.1 ± 0.6% removal of dissolved organic carbon and 83.3 ± 0.9% removal of NH3-N are achieved in the treatment of domestic sewage. The purpose of this work is to present a novel strategy for the regeneration of Fe2+ in the EF process and also to elucidate the role of different N species of the carbonaceous electrode in contributing to the redox cycle of Fe2+/Fe3+.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Zhiyuan Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Wang Z, Pi L, Cui J, Zhang X, Liu Y, Tang D, Zhu H, Mao X. Heterogeneous Electro-Fenton system for efficient degradation of 2,4-DCP: Dual activation of O2 for H2O2 generation and oxygen-defect cobalt ferrite catalysts. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Wang W, Lu X, Su P, Li Y, Cai J, Zhang Q, Zhou M, Arotiba O. Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine. CHEMOSPHERE 2020; 259:127423. [PMID: 32574847 DOI: 10.1016/j.chemosphere.2020.127423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
It is vital to synthesis hydrogen peroxide via electrochemical reduction of oxygen since it is a green process to produce oxidant with wide applications including water/wastewater treatment. In this work, fluorine (F) was employed to modify carbon nanotube (CNT), and the obtained F doped CNT (F-CNT) catalyst was used to fabricate gas diffusion electrode (GDE). It was found that F doping could improve oxygen reduction activity and H2O2 selectivity, and then enhanced the H2O2 production. After modification, F-CNT prepared with 0.6 M HF (CNT-F-0.6) had much higher H2O2 production (47.6 mg L-1) and current efficiency (89.5%) than that of CNT (29.6 mg L-1, 70.1%) at bias voltage of -1.3 V (vs SCE) and pH 7. Moreover, the high catalytic activity of CNT-F-0.6 could maintain in 5 consecutive reaction cycles. The material characterization and electrochemical test indicated that F doping had no significant effects on the surface area of CNT, but improved the defect degree of CNT. The enhanced H2O2 production performance could be ascribed to the formation of CF2 and CF3 on the surface of F-doped CNT, which rendered the potential for practical application of novel carbon catalyst for GDE.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoye Lu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yawei Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingju Cai
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Omotayo Arotiba
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
11
|
Wang J, Chen R, Zhang T, Wan J, Cheng X, Zhao J, Wang X. Technological Optimization for H 2O 2 Electrosynthesis and Economic Evaluation on Electro-Fenton for Treating Refractory Organic Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianshe Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ruirui Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Tianyi Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Xianglin Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Jianhong Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Xinhai Wang
- Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering. Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
12
|
Deng F, Olvera-Vargas H, Garcia-Rodriguez O, Zhu Y, Jiang J, Qiu S, Yang J. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:249-258. [PMID: 31170573 DOI: 10.1016/j.jhazmat.2019.05.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 05/26/2019] [Indexed: 05/03/2023]
Abstract
For the first time, a biomass-derived porous carbon cathode (WDC) was fabricated via a facile one-step pyrolysis of recovered wood-waste without any post-treatment. The WDC along with pyrophosphate (PP) as electrolyte were used in electro-Fenton (EF) at pH 8 for sulfathiazole (STZ) treatment. The H2O2 accumulation capacity of WDC was optimized via the following parameters: pyrolysis temperature, applied current and electrolyte. Results showed that the WDC cathode prepared at 900 °C achieved the highest H2O2 accumulation (13.80 mg L-1 in 3 h) due to its larger electroactive surface area (28.81 cm2). Interestingly, it was found that PP decreased the decomposition rate of H2O2 in solution as compared to conventional electrolyte, which resulted in higher H2O2 accumulation. PP allowed operating EF at pH of 8 due to the formation of Fe2+-PP complexes in solution. Moreover, Fe2+-PP was able to activate oxygen to produce OH. In this way, the degradation of STZ took place through four main pathways: 1) via OH from the Fe2+-PP complex, 2) via OH from EF reactions, 3) via surface OH at the boron doped diamond electrode (BDD) and 4) via SO4- from BDD activation. Finally, microtox tests revealed that some toxic intermediates were generated during WDC/BDD/PP EF treatment, but they were removed at the end of the process.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; School of Chemical and Environmental Engineering, Jiang Han University, Wuhan, 430056, PR China
| | - Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Orlando Garcia-Rodriguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China.
| | - Shan Qiu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Jixian Yang
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
13
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Yu F, Wang Y, Ma H. Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Shen F, Liu J, Wu D, Dong Y, Zhang Z. Development of O 2 and NO Co-Doped Porous Carbon as a High-Capacity Mercury Sorbent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1725-1731. [PMID: 30609366 DOI: 10.1021/acs.est.8b05777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a novel Hg0 adsorption strategy based on nonthermal plasma and porous carbon was proposed and tested. The O2 and NO in flue gas were used to activate porous carbon with auxiliary plasma. The plasma significantly increased the functionalities on the carbon surface, and it has a negligible effect on the textural properties of porous carbon. The O2/NO co-doped porous carbon was used to remove elemental mercury (Hg0). The sample functionalized by plasma in 4% O2 and 200 ppm NO (balanced with N2) for 3 min exhibited superior Hg0 adsorption ability, which could be assigned to the formation of a large amount of C═O, C-NO, and C-NO2. O2, NO, and HCl have a positive effect on Hg0 adsorption, whereas SO2 and H2O have an inhibitory effect on Hg0 removal. The equilibrium Hg0 adsorption capacity of optimal O2/NO co-doped porous carbon was found to be 12315 μg/g, which was far greater than that of brominated activated carbon (1061 μg/g). Density functional theory was used to investigate the mechanism responsible for Hg0 adsorption. C═O and C-NO improved the interaction of Hg0 with neighboring carbon sites. C-NO2 could react with Hg0 by forming HgO.
Collapse
Affiliation(s)
- Fenghua Shen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Dawei Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yuchen Dong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Zhen Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
16
|
Deng F, Qiu S, Olvera-vargas H, Zhu Y, Gao W, Yang J, Ma F. Electrocatalytic sulfathiazole degradation by a novel nickel-foam cathode coated with nitrogen-doped porous carbon. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Effective mineralization of anti-epilepsy drug carbamazepine in aqueous solution by simultaneously electro-generated H2O2/O3 process. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|