1
|
Hu G, Diao Y, Cui S, Wang H, Shi Y, Li Z. An electrochemically cleanable pH electrode based on an electrodeposited iridium oxide-ruthenium oxide-titanium composite. Analyst 2024; 149:1327-1336. [PMID: 38259145 DOI: 10.1039/d3an01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological contamination is an important issue in environmental pH detection, and our prepared electrochemically cleanable electrode may be an effective solution. By electrodepositing an iridium oxide-ruthenium oxide composite on a titanium sheet substrate, the electrode shows a sensitivity of 59.4 mV per pH in the pH range of 2-12 with high reproducibility, low hysteresis, high selectivity and high stability. It is worth mentioning that the electrode was proved to be electrochemically cleanable from biological contamination. When the cleaning time was 30 minutes, the electrode sensitivity rose from 50 to 58 mV per pH. Furthermore, the pH sensor, assembled from the prepared iridium-ruthenium oxide electrode and a home-made Ag/AgCl electrode, has similar electrode properties to those of commercial glass electrodes, but is also mechanically strong and electrochemically cleanable, which is promising for long-term deployment in natural environments.
Collapse
Affiliation(s)
- Guangxing Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongxing Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuang Cui
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Wu D, Wang X, Wu X. Galvanostatic Electrodeposition of Durable IrO x Films on Low-Iridium-Supported Titanium for an Acidic Oxygen Evolution Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
3
|
Wu F, Yang ZQ, Sun W, Chen X, Qi H, Wang LD. Electrochemical Properties of Ti/SnO 2-Sb-Ir Electrodes Doped with a Low Iridium Content for the Oxygen Evolution Reaction in an Acidic Environment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Wu
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Zheng-Qing Yang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Wen Sun
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Xu Chen
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Hui Qi
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Li-Da Wang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| |
Collapse
|
4
|
Martínez JSB, González AS, López MC, Ayala FE, Mijangos JC, de Jesús Treviño Reséndez J, Vöng YM, Rocha JM, Bustos EB. Electrochemical degradation of amoxicillin in acidic aqueous medium using TiO 2-based electrodes modified by oxides of transition metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42130-42145. [PMID: 34255261 DOI: 10.1007/s11356-021-15315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
One of the most widely used antibiotics is amoxicillin (AMX), which is the most widely used in humans and animals, but it is discharged metabolically due to its indigestibility. Conventional biological and physicochemical methods for removing AMX from water are not enough to mineralize it; it is only concentrated and transferred to produce new residues that require further processing to remove the new residues. In this research, naked and modified surfaces with TiO2 nanotubes (TiO2,nt) electrophoretically modified with PbO2, IrO2, RuO2, and Ta2O5 were used to evaluate their efficiency in the electrochemical degradation of AMX in acid media (0.1 mol L-1 H2SO4). After their comparison, Pb-Ta 50:50|TiO2,nt|Ti showed the highest removal efficiency of AMX (44.71%) with the lowest specific energy consumption (8.69 ± 0.78 kWh Kg COD-1) and the average instant current efficiency of 26.67 ± 9.19%, in comparison with the others naked and modified surfaces of TiO2,nt∣Ti.
Collapse
Affiliation(s)
- Jaxiry Shamara Barroso Martínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Antonia Sandoval González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Mónica Cerro López
- Universidad de las Américas de Puebla, Ex hacienda Santa Catarina Mártir s/n, 72810, San Andrés Cholula, Puebla, Mexico
| | - Fabricio Espejel Ayala
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Jesús Cárdenas Mijangos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - José de Jesús Treviño Reséndez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Yunny Meas Vöng
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Juan Manríquez Rocha
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Erika Bustos Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
5
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
6
|
Li Z, Feng Y, Chang L, Long Y, Suo N, Wang Z, Yu Y. Efficient degradation of naproxen in a three dimensional biofilm electrode magnetism reactor (3DBEMR): Removal performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 346:126653. [PMID: 34979277 DOI: 10.1016/j.biortech.2021.126653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
A three-dimensional biofilm electrode magnetism reactor (3DBEMR) was constructed to removal naproxen (NPX). This study evaluated 3DBEMR performance in removal of refractory NPX, while also discussing the effect of the electro-magnetic superposition on microbial community by high throughput sequencing. Results indicated that 3DBEMR's average removal rate for NPX stood at 88.36%, representing an increase by 75.24%, 65.03% and 12.36%, respectively, compared to 3DBR (Three-Dimensional Biofilm Reactor), 3DBMR (Three-Dimensional Biofilm Magnetism Reactor) and 3DBER (Three-Dimensional Biofilm Electrode Reactor). This was attributed to the influence of electro-magnetic adsorption, electro-oxidaton/catalysis, and electro-magnetic biodegradation. Another major contributing factor to NPX removal was the presence in 3DBEMR of high-abundance genera such as Rhodobacter, Porphyrobacter, Methyloversatilis, Sphingopyxis,Bosea, Singulisphaera, Sphingomonas. Therefore, the 3DBEMR was successfully demonstrated to be a flexible and effective technique in NPX degradation, which would help to better understand the effect of superposition of electric and magnetic fields on microbial community.
Collapse
Affiliation(s)
- Zichen Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China.
| | - Lei Chang
- Shandong Urban Construction Vocational College, Jinan 250022, PR China
| | - Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan 250022, PR China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, PR China
| |
Collapse
|
7
|
Treviño-Reséndez J, Nacheva PM. Removal of naphthalene and phenanthrene in synthetic solutions by electro-oxidation coupled with membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48543-48555. [PMID: 33909250 DOI: 10.1007/s11356-021-13787-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Naphthalene (NAPH) and phenanthrene (PHEN) are two of the most abundant polycyclic aromatic hydrocarbons (PAHs) found in nature, and they are considered in the list of US EPA priority pollutants. The contribution of this research lies in the comprehensive analysis of a strategy for the coupling of electro-oxidation (EO) and biodegradation in a submerged membrane bioreactor (SMBR) with the objective to remove PAHs, using NAPH and PHEN as model compounds. The electrochemical degradation of NAPH and PHEN in aqueous synthetic solution has been carried out using two different anodes: Ti/IrO2 and Ti/SnO2. The effects of EO operating parameters (current density, reaction time, and pH) on the NAPH and PHEN removals were investigated applying 23 factorial design with both electrodes. Additionally, the EO effluents were analyzed for COD, NH4-N, and biodegradability (respirometry tests). The highest removals of both compounds were reached with Ti/IrO2 anode, at acidic conditions (pH of 2), current density of 50 mA cm-2, and electrolysis time of 60 min. However, the Ti/SnO2 anode allowed greater reduction of the biomass inhibition, which means that the enhancement of the EO effluent biodegradability was reached; therefore, this electrode was selected for the coupled EO-SMBR system, applying the operating conditions that improved the biodegradability of the effluent. The EO process allowed NAPH and PHEN removal efficiencies of 96 ± 5% and 94 ± 3%, respectively. The membrane bioreactor was operated with organic load of 0.6 ± 0.1 gCOD gVSS-1 d-1, hydraulic retention time of 6 h, and solid retention time of 30 d, obtaining average COD, NH4-N, NAPH, and PHEN removals of 98±0.5%, 91±6.4%, 99.1±0.96%, and 99.7±0.4% respectively. The sorption of phenanthrene onto the biomass had a low contribution, 0.9±0.2%, concluding that biodegradation was the main removal mechanism in the bioreactor. The coupled system EO-SMBR allowed high NAPH and PHEN removal efficiencies of 99.99±0.01 and 99.99±0.02%, respectively.
Collapse
Affiliation(s)
- José Treviño-Reséndez
- Universidad Nacional Autonoma de México, Campus IMTA, Blvd. Paseo Cuauhnáhuac 8532, Col. Progreso, C.P.62550, Morelos, México
| | - Petia Mijaylova Nacheva
- Instituto Mexicano de Tecnología del Agua, Blvd. Paseo Cuauhnáhuac 8532, Col. Progreso, C.P. 62550, Morelos, México.
| |
Collapse
|
8
|
Electrochemical Degradation of Tetracycline Using a Ti/Ta 2O 5-IrO 2 Anode: Performance, Kinetics, and Degradation Mechanism. MATERIALS 2021; 14:ma14154325. [PMID: 34361518 PMCID: PMC8347010 DOI: 10.3390/ma14154325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
Tetracycline (TC) is widely used in production and in life. The high volume of its use and the difficulty of its disposal have become the most important causes of environmental pollution. A suitable method needs to be found to solve this problem. In this study, the Ti/Ta2O5-IrO2 electrode was characterized for its surface morphology and crystal composition. The electrochemical catalytic ability of the Ti/Ta2O5-IrO2 electrode was investigated using LSV and CV tests. The electrochemical degradation of tetracycline (TC) in water with a Ti/Ta2O5-IrO2 anode was investigated. The main influence factors, such as current density (2.5–10 mA/cm2), electrode spacing (20–40 mm), initial TC concentration (20–80 mg/L) and initial solution pH (4.74–9.48) were analyzed in detail and their influences on reaction kinetics was summed up. The removal rate increased along with the increasing current density, decreasing initial TC concentration and decreasing of electrode distance under the experimental conditions. The optimum pH was 4.74. UV–vis, total organic carbon (TOC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses were used to reveal the mechanism of TC degradation. Nine main intermediates were identified, and the degradation pathways were proposed. A new insight has been postulated for the safe and efficient degradation of TC using the Ti/Ta2O5-IrO2 electrode.
Collapse
|
9
|
Sun G, Wang C, Gu W, Song Q. A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144908. [PMID: 33578158 DOI: 10.1016/j.scitotenv.2020.144908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Electrocatalytic degradation of organic pollutants is an encouraging technology for wastewater treatment. To achieve practical application, electrode plate with cost effective fabrication, high catalytic efficiency and long service life is urgently required. This work prepared a CuO-SnO2-SbOX electrode on Ti substrate, which is achieved by ultrasonic assisted deposition of Cu layer, followed by electroless deposition of SnSb layer and finalized by calcination at 500 °C. The obtained electrode (Ti/CuO-SnO2-SbOX) exhibited high catalytic degradation activity and a high oxygen evolution potential (OEP) of 2.13 V, which is 0.4 V greater than that of the widely recognized Ti/SnO2-SbOX electrode. The oxygen evolution reaction (OER) models of active oxygen intermediate adsorption was optimized by density functional theory (DFT) calculations. The results revealed that (1) the ΔG of the OER rate-determining step was raised to 2.30 eV after Cu doping on 101 plane; (2) binding energies of the optimized surface with reactive oxygen species (ROS) were substantially decreased. Furthermore, the as-prepared electrode has a high yield of hydroxyl radical generation as evidenced by terephthalic acid detection. The potential for hydroxyl radical generation was measured to be 1.8 V at pH = 12 and 2.6 V at pH = 2.The catalytic degradation rate of methylene blue (MB) follows pseudo first order reaction kinetics, and the reaction constant K value reached 0.02964 -k/min-1, twice as much as that obtained from electrodeposition electrode (Ti/Cu/SnO2-SbOX). A degradation rate of 94.6% was achieved for MB in 100 min in the first run, and the value remained over 85% in the subsequent 10 runs. At the same conditions, the degradation rate of p-nitrophenol was over 90% in 100 min and complete mineralization was achieved in 4 h.
Collapse
Affiliation(s)
- Guowei Sun
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wenxiu Gu
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
10
|
Li Z, Dai R, Yang B, Chen M, Wang X, Wang Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124198. [PMID: 33068987 DOI: 10.1016/j.jhazmat.2020.124198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.9% removal of SDZ, significantly higher than that of a control membrane biofilm reactor (MBfR) without electric field applied (44.3%) or an electrolytic reactor without biofilm (77.3%). Moreover, the relative abundance of ARGs in the EMBfR was only 32.0% of that in MBfR, suggesting that the production of ARGs was significantly suppressed in the EMBfR. The underlying mechanisms relate to (i) the change of the microbial community structure in the presence of the electric field, leading to the enrichment of potential aromatic-degrading microorganisms (e.g., Rhodococcus accounting for 51.0% of the total in the EMBfR compared to 10.0% in the MBfR) and (ii) the unique degradation pathway of SDZ in the EMBfR attributed to the synergistic effect between the electrochemical and biological processes. Our study highlights the benefits of EMBfR in removing pharmaceuticals from contaminated waters and suppressing the development (and transfer) of ARGs in the environment.
Collapse
Affiliation(s)
- Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Baichuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Hu X, Dong H, Zhang Y, Fang B, Jiang W. Mechanism of N, N-dimethylformamide electrochemical oxidation using a Ti/RuO 2-IrO 2 electrode. RSC Adv 2021; 11:7205-7213. [PMID: 35423280 PMCID: PMC8694957 DOI: 10.1039/d0ra10181h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
The compound N,N-dimethylformamide (DMF) is a widely used industrial chemical and a common environmental contaminant that has been found to be harmful to human health. In this study, electrochemical oxidation was adopted for the degradation of DMF. The effects of four kinds of electrodes on the removal rates of DMF and total organic carbon were compared, and based on the result, the Ti/RuO2–IrO2 electrode was selected as the operating electrode. The effects of three independent factors (current density, pH, and NaCl proportion) on the DMF degradation were investigated through single-factor experiments, and the experimental results were optimized by response surface methodology. The optimal experimental conditions were obtained as follows: current density = 47 mA cm−2, pH = 5.5, and NaCl proportion = 15%. The electrochemical oxidation of 50 mg L−1 DMF was performed under the optimal conditions; the degradation rate was 97.2% after 7 h, and the reaction followed the pseudo-first-order kinetic model. The degradation products under optimal conditions and chlorine-free conditions were analyzed, and four degradation pathways were proposed. The DMF degradation was more thorough under optimal conditions. DEMS as an emerging technology was used to investigate the degradation mechanism of DMF.![]()
Collapse
Affiliation(s)
- Xuyang Hu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Hao Dong
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Yinghao Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Baihui Fang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| |
Collapse
|
12
|
Luna-Trujillo M, Palma-Goyes R, Vazquez-Arenas J, Manzo-Robledo A. Formation of active chlorine species involving the higher oxide MOx+1 on active Ti/RuO2-IrO2 anodes: A DEMS analysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Espinoza LC, Sepúlveda P, García A, Martins de Godoi D, Salazar R. Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO 2 and IrO 2 nanoparticles. CHEMOSPHERE 2020; 251:126674. [PMID: 32359720 DOI: 10.1016/j.chemosphere.2020.126674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dimensionally stable anodes (DSA) have been widely used to degrade organic compounds because these surfaces promote the electrogeneration of active chlorine species in the bulk of the solution, as well as in the vicinity of the anode when NaCl is used as supporting electrolyte. In this work, the nanoparticles synthesis of IrO2 and RuO2 was performed to obtain two types of DSA electrodes named Class I and II to degrade oxamic acid. For Class I and II DSA, the nanoparticles used were synthesized separately and in the same reaction medium, respectively. Electrolysis were carried out in an open cylindrical cell without division at 25 °C, DSAs were used as anodes and a stainless-steel electrode as cathode, both elements have a geometric area of 2.8 cm2 immersed in 0.05 mol L-1 of NaCl or Na2SO4 and a current density of 3 mA cm-2 was applied for 6 h. Active chlorine species generated in the absence of oxamic acid in NaCl were also detected and quantified through ion chromatography. In Na2SO4 there was no degradation of the compound, but in NaCl the oxamic acid concentration reaching 85% with Class I DSA. The same tendency is observed in mineralization, in which Class I DSA allowed reaching a CO2 transformation close to 73%. The difference in the results occurs because with Class I DSA, more hypochlorite is generated than with Class II and therefore there is a larger amount of oxidizing species in the solution that enables the degradation and mineralization of oxamic acid.
Collapse
Affiliation(s)
- L Carolina Espinoza
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Pamela Sepúlveda
- Facultad de Química and Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandra García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Mexico
| | - Denis Martins de Godoi
- Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisicoquímica, São Paulo State University,UNESP, Araraquara, Brazil
| | - Ricardo Salazar
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| |
Collapse
|
14
|
Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135784] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Xue SG, Tang L, Tang YK, Li CX, Li ML, Zhou JJ, Chen W, Zhu F, Jiang J. Selective Electrocatalytic Water Oxidation to Produce H 2O 2 Using a C,N Codoped TiO 2 Electrode in an Acidic Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4423-4431. [PMID: 31850743 DOI: 10.1021/acsami.9b16937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Production of hydrogen peroxide (H2O2) via in situ electrochemical water oxidation possesses great potential applications in the energy and environment fields. In this work, for the first time, we reported a C,N codoped TiO2 electrode for selective electrocatalytic water oxidation to produce H2O2 in an acidic electrolyte. An electrochemical anodic oxidation method combined with postcalcination in the presence of urea was applied to fabricate such a C,N codoped TiO2 electrode, which was evidenced by detail structural characterizations. The calcination temperature and urea atmosphere were found to play key roles in its catalytic performances; the optimized 600N sample exhibited an onset potential of 2.66 V (vs Ag/AgCl) and a Tafel slope of 51 mV dec-1 at pH 3. Under the optimal applied potential, the cumulative H2O2 concentration for this sample reached 0.29 μmol L-1 cm-2 h-1. More importantly, a simple recalcination strategy was developed to recover the deactivation electrode. This study proposed an efficient C,N codoped TiO2 electrode toward water oxidation to selectively produce H2O2 in the acidic electrolyte, which could be further used to in situ generate H2O2 for the energy- and environment-related fields with water as the precursor.
Collapse
|
16
|
Enhanced degradation of reactive dyes using a novel carbon ceramic electrode based on copper nanoparticles and multiwall carbon nanotubes. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
18
|
Xu W, Haarberg GM, Sunde S, Seland F, Ratvik AP, Holmin S, Gustavsson J, Afvander Å, Zimmerman E, Åkre T. Sandblasting effect on performance and durability of Ti based IrO2−Ta2O5 anode in acidic solutions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Zhao R, Zhang X, Chen F, Man X, Jiang W. Study on Electrochemical Degradation of Nicosulfuron by IrO₂-Based DSA Electrodes: Performance, Kinetics, and Degradation Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E343. [PMID: 30691144 PMCID: PMC6388240 DOI: 10.3390/ijerph16030343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 11/20/2022]
Abstract
The widely used sulfonylurea herbicides have caused negative effects on the environment and human beings. Electrochemical degradation has attracted much attention in the treatment of refractory organic compounds due to its advantage of producing no secondary pollution. Three kinds of IrO₂-based dimensionally stable anodes (DSAs) were used to degrade nicosulfuron by a batch electrochemical process. The results showed that a well-distributed crack network was formed on the Ti/Ta₂O₅-IrO₂ electrode and Ti/Ta₂O₅-SnO₂-IrO₂ electrode due to the different coefficients of thermal expansion between the Ti substrate and oxide coatings. The oxygen evolution potential (OEP) increased according to the order of Ti/RuO₂-IrO₂ < Ti/Ta₂O₅-SnO₂-IrO₂ < Ti/Ta₂O₅-IrO₂. Among the three electrodes, the Ti/Ta₂O₅-IrO₂ electrode showed the highest efficiency and was chosen as the experimental electrode. Single factor experiments were carried out to obtain the optimum electrolysis condition, shown as follows: currency intensity 0.8 A; electrode spacing 3 cm, electrolyte pH 3. Under the optimum conditions, the degradation of nicosulfuron followed first-order kinetics and was mainly due to indirect electrochemical oxidation. It was a typical diffusion-controlled electrochemical process. On the basis of the intermediate identified by high performance liquid chromatograph-mass spectrometry (HPLC-MS), two possible degradation routes were proposed.
Collapse
Affiliation(s)
- Rui Zhao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Xuan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Fanli Chen
- Jinan Tianzheng Technology Co., Ltd., Ji'nan 250353, China.
| | - Xiaobing Man
- Shandong Bluetown Analysis and Testing Co., Ltd, Ji'nan 250353, China.
| | - Wenqiang Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| |
Collapse
|
20
|
Lou Z, Li Y, Zhou J, Yang K, Liu Y, Baig SA, Xu X. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2,4-DCBA: Enhanced electrical conductivity and reactive activity. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:148-159. [PMID: 30236935 DOI: 10.1016/j.jhazmat.2018.08.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium carbide (TiC) with excellent electrical conductivity, chemical and thermal stabilities has been recognized as one of the most promising electrocatalysts. A novel cathode, titanium carbide doped palladium/nickel foam (TiC-Pd/Ni foam), was synthesized via electroless deposition to improve the performance of Pd/Ni foam in electrocatlytic hydrodechlorination (ECH). TiC can be co-precipitated onto the surface of cathode during galvanic replacement reaction between Pd(II) solution and Ni foam. Both constant potential and constant current tests proved that TiC-Pd/Ni foam cathode performed remarkably higher activity for 2,4-dichlorobenzoic acid (2,4-DCBA) than Pd/Ni foam cathode, owing to the excellent conductivity of TiC and enhanced water dissociation over TiC-Pd/Ni foam cathode. Under the optimized reaction conditions of -0.85 V (vs Ag/AgCl), electrolyte of 10 mM and initial pH of 4, 99.8% of aqueous 2,4-DCBA (0.2 mM) was removed within 90 min. The removal process of the aqueous 2,4-DCBA obeyed first-order decay kinetic model. Over 86.3% of 2,4-DCBA can still be removed by TiC-Pd/Ni foam cathode in the fifth consecutive run within 120 min, which was much higher than that of Pd/Ni foam cathode (37.5%). Consequently, TiC-Pd/Ni foam cathode was a promising design for enhanced ECH activity and reduced operation cost.
Collapse
Affiliation(s)
- Zimo Lou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yizhou Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiasheng Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Kunlun Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuanli Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
21
|
Machado CF, Gomes MA, Silva RS, Salazar-Banda GR, Eguiluz KI. Time and calcination temperature influence on the electrocatalytic efficiency of Ti/SnO2:Sb(5%),Gd(2%) electrodes towards the electrochemical oxidation of naphthalene. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|