1
|
Muhyuddin M, Testa D, Lorenzi R, Vanacore GM, Poli F, Soavi F, Specchia S, Giurlani W, Innocenti M, Rosi L, Santoro C. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: Evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. CHEMOSPHERE 2022; 290:133184. [PMID: 34890618 DOI: 10.1016/j.chemosphere.2021.133184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.
Collapse
Affiliation(s)
- Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India
| | - Büşra Bayar
- Faculty of Sciences, University of A Coruña, E-15008, A Coruña, Spain
| | | | - Balendu Shekher Giri
- Aquatic Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, Uttar Pradesh, 226001, India
| | - Eldon R Rene
- Department of Water Supply Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest, 2601DA Delft 7, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
3
|
Li S, Zhu X, Yu H, Wang X, Liu X, Yang H, Li F, Zhou Q. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2021; 197:111054. [PMID: 33775682 DOI: 10.1016/j.envres.2021.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater presents serious challenges in water treatment. Metal-organic frameworks (MOFs) have received significant attention as promising precursors and sacrificial templates in the preparation of porous carbon-supported catalysts. Herein, we investigated the sulfamethoxazole (SMX) degradation and electrochemical performance of microbial fuel cells (MFCs) that applied as-prepared Ni-MOF-74 and Ni-N-C (Ni-MOF-74 underwent pyrolysis treatment at different temperatures) as air-cathode catalyst. Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating disk electrode. The results showed that electron transfer number for Ni-MOF-74 was 2.12, while that of 800Ni-N-C was 3.44, which was close to four-electron reduction. Applying Ni-MOF-74 in MFCs, a maximum power density of 446 mW/m2 was obtained, which was close to that of 800Ni-N-C. Besides, using Ni-MOF-74 as cathode catalyst, a chemical oxygen demand removal rate of about 84% was obtained, and the degradation rate of 10 mg/L SMX was 61%. The degradation rate decreased with increasing antibiotic concentration, but the average degradation efficiency increased stepwise. Additionally, the relative abundance of resistant gene sul1 in the reactors of the new catalytic material was about 62% lower than that of sul1 in the control (Pt/C) reactors, and the relative abundance of sul2 was about 73% lower. Moreover, cost assessments related to the catalyst performance are presented. The findings of this study demonstrated that Ni-MOF-74 could be considered as a two-electron transfer ORR catalyst, and offers a promising technique for preparation of Ni-N-C for use as four-electron transfer ORR catalysts. In comparison, Ni-MOF-74 could be a promising ORR catalyst of MFCs for antibiotic degradation.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hang Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xizi Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xiaqing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hui Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China.
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| |
Collapse
|
4
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochim Acta 2020; 353:136530. [PMID: 32884155 PMCID: PMC7430050 DOI: 10.1016/j.electacta.2020.136530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double cathode was added leading to a decrease in the equivalent series resistance (ESR); ii) the apparent capacitance was boosted up by adding capacitive features on the anode electrode. Galvanostatic (GLV) discharges were performed at different discharge currents. The results showed that both strategies were successful obtaining a maximum power output of 1.59 ± 0.01 mW (1.06 ± 0.01 mW mL−1) at pulse time of 0.01 s and 0.57 ± 0.01 mW (0.38 ± 0.01 mW mL−1) at pulse time of 2 s. The highest energy delivered at ipulse equal to 2 mA was 3.3 ± 0.1 mJ. The best performing SC-MFCs were then connected in series and parallel and tested through GLV discharges. As the power output was similar, the connection in parallel allowed to roughly doubling the current produced. Durability tests over ≈5.6 days showed certain stability despite a light overall decrease. Air-breathing microbial fuel cell was tested in supercapacitive mode. A double cathode addition lead to a decrease in ohmic resistance. Apparent capacitance was boosted up by adding capacitive features. Maximum power output of 1.59 mW (1.06 mW mL−1) was reached at tpulse 0.01s. Series and parallel connections improved the galvanostatic discharges.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università̀; di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
5
|
Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts 2020. [DOI: 10.3390/catal10050475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Scientific and technological innovation is increasingly playing a role for promoting the transition towards a circular economy and sustainable development. Thanks to its dual function of harvesting energy from waste and cleaning up waste from organic pollutants, microbial fuel cells (MFCs) provide a revolutionary answer to the global environmental challenges. Yet, one key factor that limits the implementation of larger scale MFCs is the high cost and low durability of current electrode materials, owing to the use of platinum at the cathode side. To address this issue, the scientific community has devoted its research efforts for identifying innovative and low cost materials and components to assemble lab-scale MFC prototypes, fed with wastewaters of different nature. This review work summarizes the state-of the-art of developing platinum group metal-free (PGM-free) catalysts for applications at the cathode side of MFCs. We address how different catalyst families boost oxygen reduction reaction (ORR) in neutral pH, as result of an interplay between surface chemistry and morphology on the efficiency of ORR active sites. We particularly review the properties, performance, and applicability of metal-free carbon-based materials, molecular catalysts based on metal macrocycles supported on carbon nanostructures, M-N-C catalysts activated via pyrolysis, metal oxide-based catalysts, and enzyme catalysts. We finally discuss recent progress on MFC cathode design, providing a guidance for improving cathode activity and stability under MFC operating conditions.
Collapse
|
6
|
|
7
|
Li M, Bi YG, Xiang L, Chen XT, Qin YJ, Mo CH, Zhou SQ. Improved cathodic oxygen reduction and bioelectricity generation of electrochemical reactor based on reduced graphene oxide decorated with titanium-based composites. BIORESOURCE TECHNOLOGY 2020; 296:122319. [PMID: 31689612 DOI: 10.1016/j.biortech.2019.122319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
A kind of reduced graphene oxide decorated with titanium-based (RGO/TiO2) composites are successfully synthesized and employed in this current study as a novel nonprecious metal catalyst for enhancing bioelectricity generation and cathodic oxygen reduction reaction (ORR) in single chamber microbial fuel cells (MFCs). Compared with commercial Pt/C, RGO/TiO2 shows obviously enhanced oxygen reduction reaction activity due to the appropriately-permeated, large electrochemical active area, enough exposure of electrocatalytic active sites of RGO/TiO2. The air-cathode MFC with RGO/TiO2-1 cathode achieves 1786.7 mW m-3 of power density, 86.7% ± 1.2% of COD removal and 31.6% ± 1.1% of CE, which are higher than commercial Pt/C. Moreover, RGO/TiO2-1 cathode exhibits high-effective electrocatalytic activity, and the power density of RGO/TiO2-1 can keep a stable level and only has a minor decline (5.35%) during 30-cycles operation. These results indicate that RGO/TiO2-1 is a potential cathode catalyst, markedly enhancing cathode ORR, wastewater treatment efficiency, and bioelectricity generation of MFC.
Collapse
Affiliation(s)
- Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yong-Guang Bi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Ting Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Shao-Qi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
8
|
Rossi R, Wang X, Yang W, Logan BE. Impact of cleaning procedures on restoring cathode performance for microbial fuel cells treating domestic wastewater. BIORESOURCE TECHNOLOGY 2019; 290:121759. [PMID: 31323515 DOI: 10.1016/j.biortech.2019.121759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Degradation of cathode performance over time is one of the major drawbacks in applications of microbial fuel cells (MFCs) for wastewater treatment. Over a two month period the resistance of air cathodes (RCt) with a polyvinylidene fluoride (PVDF) diffusion layer increased of 111% from 70 ± 10 mΩ m2 to 148 ± 32 mΩ m2. Soaking the cathodes in hydrochloric acid (100 mM HCl) restored cathode performance to RCt = 74 ± 17 mΩ m2. Steam, ethanol, or sodium hydroxide treatment produced only a small change in performance, and slightly increased RCt. With a polytetrafluoroethylene (PTFE) diffusion layer on the cathodes, RCt increased from 54 ± 14 mΩ m2 to 342 ± 142 mΩ m2 after two months of operation. The acid concentration was critical for effectiveness in cleaning, as HCl (100 mM) decreased RCt to 28 ± 8 mΩ m2. A lower concentration of HCl (<1 mM) showed no improvement, and vinegar (5% acetic acid) produced 48 ± 4 mΩ m2.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xu Wang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA; School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 129 Luoyu Road, Wuhan 430079, PR China
| | - Wulin Yang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine. Sci Rep 2019; 9:11787. [PMID: 31409853 PMCID: PMC6692344 DOI: 10.1038/s41598-019-48128-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
Microbial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possible environmental transmission of enteric viruses originating from the waste stream. In this study, for the first time we investigated this aspect by assessing the removal efficiency of hepatitis B core and surface antigens in cascades of continuous flow microbial fuel cells. The log-reduction (LR) of surface antigen (HBsAg) reached a maximum value of 1.86 ± 0.20 (98.6% reduction), which was similar to the open circuit control and degraded regardless of the recorded current. Core antigen (HBcAg) was much more resistant to treatment and the maximal LR was equal to 0.229 ± 0.028 (41.0% reduction). The highest LR rate observed for HBsAg was 4.66 ± 0.19 h−1 and for HBcAg 0.10 ± 0.01 h−1. Regression analysis revealed correlation between hydraulic retention time, power and redox potential on inactivation efficiency, also indicating electroactive behaviour of biofilm in open circuit control through the snorkel-effect. The results indicate that microbial electrochemical technologies may be successfully applied to reduce the risk of environmental transmission of hepatitis B virus but also open up the possibility of testing other viruses for wider implementation.
Collapse
|
10
|
Gajda I, Greenman J, Santoro C, Serov A, Atanassov P, Melhuish C, Ieropoulos IA. Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2019; 94:2098-2106. [PMID: 31423040 PMCID: PMC6686702 DOI: 10.1002/jctb.5792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal-carbon-derived electrocatalyst containing iron and nicarbazin (Fe-NCB) was developed, to enhance electricity generation from neat human urine. Substrate oxidation at the anode provides energy for the separation of ions and recovery from urine without any chemical or external power additions. RESULTS The catalyst was shown to be effective in clear electrolyte synthesis of high pH, compared with a range of carbon-based metal-free materials. Polarisation curves of tested MFCs showed up to 53% improvement (44.8 W m-3) in performance with the use of Fe-NCB catalyst.Catholyte production rate and pH directly increased with power performance while the conductivity decreased showing visually clear extracted liquid in the best-performing MFCs. CONCLUSIONS Iron based catalyst Fe-NCB was shown to be a suitable electrocatalyst for the air-breathing cathode, improving power production from urine-fed MFCs. The results suggest electrochemical treatment through electro-osmotic drag while the electricity is produced and not consumed. Electro-osmotic production of clear catholyte is shown to extract water from urine against osmotic pressure. Recovering valuable resources from urine would help to transform energy intensive treatments to resource production, and will create opportunities for new technology development. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
- Department of Applied SciencesUniversity of the West of EnglandBristolUK
| | - Carlo Santoro
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Alexey Serov
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Plamen Atanassov
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Chris Melhuish
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
- Department of Applied SciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
11
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochim Acta 2019; 307:241-252. [PMID: 31217626 PMCID: PMC6559283 DOI: 10.1016/j.electacta.2019.03.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two zones within the cell volume. The oxidation reaction occurred on the bottom electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were discharged galvanostatically at different currents and the two electrodes were able to recover their initial voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after introducing high surface area activated carbon embedded within the electrodes. Peak power produced was 1.20 ± 0.04 mW (2.19 ± 0.06 mW ml-1) for a pulse time of 0.01 s that decreased to 0.65 ± 0.02 mW (1.18 ± 0.04 mW ml-1) for longer pulse periods (5 s). Durability tests were conducted over 44 h with ≈2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance increased only by 10% and the apparent capacitance decreased by 18%.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
12
|
Rossi R, Yang W, Zikmund E, Pant D, Logan BE. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 265:200-206. [PMID: 29902652 DOI: 10.1016/j.biortech.2018.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
One challenge in using microbial fuel cells (MFCs) for wastewater treatment is the reduction in performance over time due to cathode fouling. An in-situ technique was developed to clean air cathodes using magnets on either side of the electrode, with the air-side magnet moved to clean the water-side magnet by scraping off the biofilm. The power output of the magnet-cleaned cathodes after one month of operation was 132 ± 7 mW m-2, which was 42% higher than the controls with no magnet (93 ± 4 mW m-2) (no separator, NS), and 110% higher (116 ± 4 mW m-2) than controls with separators (Sp, 55 ± 7 mW m-2). Cleaning cathodes using magnets reduced the biofilm by 75% (NS) and 28% (Sp). The in-situ cleaning technique thus improved the performance of the MFC over time by reducing biofouling due to biofilm formation on the air cathodes.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wulin Yang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Zikmund
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Majidi MR, Shahbazi Farahani F, Hosseini M, Ahadzadeh I. Low-cost nanowired α-MnO 2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 2018; 125:38-45. [PMID: 30261369 DOI: 10.1016/j.bioelechem.2018.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
In this work, low cost α-MnO2 nanowires and α-MnO2 nanowires supported on carbon Vulcan (α-MnO2/C) have been synthesized via a simple and facile hydrothermal method for application in microbial fuel cells. The prepared samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). Electrocatalytic activities of the samples have been evaluated by means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in a neutral phosphate buffer solution. EIS was performed at different potentials to gain further insight into the kinetic properties of α-MnO2/C. Both catalysts were used in air cathode microbial fuel cells to achieve power densities of 180 and 111 mWm-2 for α-MnO2/C and pristine α-MnO2 nanowires, respectively. α-MnO2/C functions as a good and economical alternative for Pt free catalysts in practical MFC applications, as shown by the findings of stability test and voltage generation cycles in long-term operation of MFC.
Collapse
Affiliation(s)
- Mir Reza Majidi
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Fatemeh Shahbazi Farahani
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Mirghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Tabriz University, Tabriz, Iran
| | - Iraj Ahadzadeh
- Research Laboratory for Electrochemical Instrumentation and Energy Systems, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|