1
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
2
|
Zheng D, Sun C, Yao R, Li J, Zheng Y, Zhu J, Liu C. A binary composite La(OH) 3@Ni(OH) 2 nanomaterial on carboxyl graphene for an efficient hybrid supercapacitor electrode. RSC Adv 2023; 13:21643-21654. [PMID: 37476034 PMCID: PMC10354498 DOI: 10.1039/d3ra03151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
In this work, we present a binary composite of La(OH)3@Ni(OH)2 on carboxyl graphene (La@Ni/CG) as an electrode material. The layered La@Ni/CG double hydroxides (LDHs) were synthesized by a simple electrodeposition method in which La(OH)3 nanoparticles were first adsorbed onto carboxyl graphene and then coated with Ni(OH)2, with different particle shapes due to the large pH change near the cathodic region. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) were used to characterise the as-prepared La@Ni/CG composite. These results showed that the La@Ni/CG composite exhibited improved electrochemical properties, including large specific capacitance (1334.7 F g-1 at 1.4 A g-1) and capacity retention of 90.6% even after 3000 cycles, and excellent rate capability. The improved electrochemical performance of the composite can be attributed to the synergistic effect of surface adsorption and conductive pathways provided by the multiple active species (Ni, La and C) in the La@Ni/CG composite. The results presented in this work provide advances in the efficient design of nanomaterial based electrochemical energy storage devices.
Collapse
Affiliation(s)
- Dianyuan Zheng
- Institute for Clean Energy & Advanced Materials, Lianyungang Normal College Lianyungang 222006 China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University Nanjing 210093 China
| | - Chengxiang Sun
- Institute for Clean Energy & Advanced Materials, Lianyungang Normal College Lianyungang 222006 China
- College of Energy and Electrical Engineering, Hohai University Nanjing 210098 China
| | - Rongbin Yao
- Institute for Clean Energy & Advanced Materials, Lianyungang Normal College Lianyungang 222006 China
| | - Jinli Li
- Institute for Clean Energy & Advanced Materials, Lianyungang Normal College Lianyungang 222006 China
| | - Yuhang Zheng
- State Grid Jiangsu Electric Power Engineering Consulting Co., Ltd Nanjing Jiangsu 210008 China
| | - Jianhong Zhu
- College of Energy and Electrical Engineering, Hohai University Nanjing 210098 China
| | - Cheng Liu
- College of Electrical Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
3
|
Chen Z, Yang H, Mebs S, Dau H, Driess M, Wang Z, Kang Z, Menezes PW. Reviving Oxygen Evolution Electrocatalysis of Bulk La-Ni Intermetallics via Gaseous Hydrogen Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208337. [PMID: 36528302 DOI: 10.1002/adma.202208337] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long-term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X-ray absorption (XAS) spectra, secondary-electron-excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen-induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero-nanoarchitecture composed of uniformly confined active γ-NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active-site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm-2 for the hydrogen-processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial-grade current density of more than 560 mA cm-2 in alkaline media.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen laboratory, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
4
|
Selvaraj B, Shanmugam G, Kamaraj S, Mathew V, Kim J. A versatile iron [1-(naphthalen-2-ylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole] 3 metal complex redox active material for energy conversion and storage systems. NEW J CHEM 2023. [DOI: 10.1039/d2nj06016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Novel Fe2+/3+ [npbi]3 redox electrolytes contributed to competitive performances in both DSC and SC applications.
Collapse
Affiliation(s)
- Balamurugan Selvaraj
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Ganesan Shanmugam
- Advanced Inorganic Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Santhosh Kamaraj
- Advanced Inorganic Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Vinod Mathew
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Jaekook Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
5
|
Cao B, Liu B, Xi Z, Cheng Y, Xu X, Jing P, Cheng R, Feng SP, Zhang J. Rational Design of Porous Nanowall Arrays of Ultrafine Co 4N Nanoparticles Confined in a La 2O 2CN 2 Matrix on Carbon Cloth for a High-Performing Supercapacitor Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47517-47528. [PMID: 36240119 DOI: 10.1021/acsami.2c09377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal nitrides (TMNs) have received special concern as important energy storage materials, owing to their high conductibility, good mechanical strength, and superior corrosion resistance. However, their insufficient capacitance and poor cycling stability limit their practical applications for supercapacitors. Here, a novel three-dimensional (3D) self-supported integrated electrode consisted of porous nanowall arrays of ultrafine cobalt nitride (Co4N) nanoparticles encapsulated in a lanthanum oxycyanamide (LOC) matrix on carbon cloth (Co4N@LOC/CC) for outstanding electrochemical energy storage is rationally designed and fabricated. The 3D monolithic configuration of porous nanowall arrays facilitates the mass/charge transfer, the exposure of electroactive sites, and the enhancement of electrical conductivity. Meanwhile, the unique core-shell structure of Co4N@LOC can prevent ultrafine Co4N nanoparticles from sintering, agglomeration, and oxidation and promotes electron transfer dynamics during the redox reaction, meanwhile enhancing the stability of the electrode. Additionally, the synergy of Co4N and LOC can result in an efficient electron/ion transport in the process of the charge-discharge. Because of these features, the Co4N@LOC/CC electrode displays superior specific capacitance (895.6 mF cm-2 or 613.4 F g-1 at 1 mA cm-2) and admirable cycling durability (87.9% capacitance reservation after 10 000 cycles), surpassing the majority of nitride-based electrodes reported thus far. Furthermore, after being assembled into an asymmetric supercapacitor using active carbon (AC) as an anode, the obtained Co4N@LOC/CC//AC/CC device displays a high energy density of 41.7 Wh kg-1 at the power density of 875.8 W kg-1 with a high capacitance reservation of 87.6% after 5000 cycles at 2 mA cm-2. This work offers an efficient approach of combining TMNs with rare earth compounds to enhance the capacitance and stability of TMNs for supercapacitor electrodes.
Collapse
Affiliation(s)
- Bo Cao
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Zichao Xi
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Yan Cheng
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Xuan Xu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Peng Jing
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Rui Cheng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
- Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot010010, People's Republic of China
- Inner Mongolia Guangheyuan Nano High-Tech Company, Limited, Ejin Horo Banner, Ordos017299, People's Republic of China
| |
Collapse
|
6
|
Li S, Wang R, Xie M, Xu Y, Chen J, Jiao Y. Construction of trifunctional electrode material based on Pt-Coordinated Ce-Based metal organic framework. J Colloid Interface Sci 2022; 622:378-389. [PMID: 35525141 DOI: 10.1016/j.jcis.2022.04.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 01/17/2023]
Abstract
The main challenge hindering the use of Pt nanoparticles (Pt NPs) for electrochemical applications is their high cost and agglomeration. Herein, a trifunctional electrode material based on a two-dimensional cerium-based metal organic framework (2D Ce-MOF) decorated with Pt NPs is constructed. The large specific surface area of the 2D Ce-MOF can effectively prevent the phenomenon of Pt NPs reaction. The strong synergy between Pt NPs and the 2D Ce-MOF not only significantly enhances electron transport efficiency, but also increases the number of electrochemically reaction reactive sites. As a result, the Ce-MOF@Pt presents excellent performance in the HER (Hydrogen Evolution Reaction), OER (Oxygen Evolution Reaction) and supercapacitor reactions. The Tafel slopes of OER and HER are 47.9 and 188.1 mV dec-1, respectively. Meanwhile, Ce-MOF@Pt-0.05 shows a specific capacity of 1894F g-1 at a current density of 1 A g-1 and remains at 111.5% of the initial capacitance after 3000 cycles. In general, this study highlights the importance of Pt NPs in promoting the electrochemical performance of MOFs and reveals a new way to reduce electrocatalyst prices.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ran Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meng Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
He Y, Zhou W, Xu J. Rare Earth-Based Nanomaterials for Supercapacitors: Preparation, Structure Engineering and Application. CHEMSUSCHEM 2022; 15:e202200469. [PMID: 35446482 DOI: 10.1002/cssc.202200469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Supercapacitors (SCs) can effectively alleviate problems such as energy shortage and serious greenhouse effect. The properties of electrode materials directly affect the performance of SCs. Rare earth (RE) is known as "modern industrial vitamins", and their functional materials have been listed as key strategic materials. In the past few years, the number of scientific reports on RE-based nanomaterials for SCs has increased rapidly, confirming that adding RE elements or compounds to the host electrode materials with various nanostructured morphologies can greatly enhance their electrochemical performance. Although RE-based nanomaterials have made rapid progress in SCs, there are very few works providing a comprehensive survey of this field. In view of this, a comprehensive overview of RE-based nanomaterials for SCs is provided here, including the preparation methods, nanostructure engineering, compounds, and composites, along with their capacitance performances. The structure-activity relationships are discussed and highlighted. Meanwhile, the future challenges and perspectives are also pointed out. This Review can not only provide guidance for the further development of SCs but also arouse great interest in RE-based nanomaterials in other research fields such as electrocatalysis, photovoltaic cells, and lithium batteries.
Collapse
Affiliation(s)
- Yao He
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
8
|
Bailmare DB, Tripathi P, Deshmukh AD, Gupta BK. Designing of two dimensional lanthanum cobalt hydroxide engineered high performance supercapacitor for longer stability under redox active electrolyte. Sci Rep 2022; 12:3084. [PMID: 35197489 PMCID: PMC8866478 DOI: 10.1038/s41598-022-06839-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Redox active electrolyte supercapacitors differ significantly from the conventional electrolytes based storage devices but face a long term stability issue which requires a different approach while designing the systems. Here, we show the change in layered double hydroxides (LDHs) systems with rare earth elements (lanthanum) can drastically influence the stability of two dimensional LDH systems in redox electrolyte. We find that the choice of rare earth element (lanthanum) having magnetic properties and higher thermal and chemical stability has a profound effect on the stability of La-Co LDHs electrode in redox electrolyte. The fabricated hybrid device with rare earth based positive electrode and carbon as negative electrode having redox electrolyte leads to long stable high volumetric/gravimetric capacity at high discharge rate, demonstrates the importance of considering the rare earth elements while designing the LDH systems for redox active supercapacitor development.
Collapse
Affiliation(s)
- Deepa B Bailmare
- Energy Materials and Devices Laboratory, Department of Physics, RTM Nagpur University, Nagpur, 440033, India
| | - Prashant Tripathi
- Photonic Materials Metrology Subdivision, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | - Abhay D Deshmukh
- Energy Materials and Devices Laboratory, Department of Physics, RTM Nagpur University, Nagpur, 440033, India.
| | - Bipin Kumar Gupta
- Photonic Materials Metrology Subdivision, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India.
| |
Collapse
|
9
|
Zafar ZA, Abbas G, Silhavik M, Knizek K, Kaman O, Sonia FJ, Kumar P, Jiricek P, Houdková J, Frank O, Cervenka J. Reversible anion intercalation into graphite from aluminum perchlorate “water‐in‐salt” electrolyte. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Pavlović MM, Pantović Pavlović MR, Eraković Pantović SG, Stevanović JS, Stopić SR, Friedrich B, Panić VV. The roles of constituting oxides in rare-earth cobaltite-based perovskites on their pseudocapacitive behavior. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li X, Chen H, Yang C, Li Y, Wei M. A new neodymium-phosphine compound for supercapacitors with long-term cycling stability. Chem Commun (Camb) 2021; 57:5933-5936. [PMID: 34013924 DOI: 10.1039/d1cc00650a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new neodymium-phosphine compound (Nd-(Ph)3P) was used for the first time as an electrode for supercapacitors and exhibited an extraordinary capacitance of 951 F g-1 at 0.5 A g-1 with a high capacitance retention of 96% after 10 000 cycles at 10 A g-1, which is the highest capacitance for rare earth based materials in SCs. Such an excellent performance might be due to the fact that this material can provide plenty of electron-active sites for charge storage and electrolyte diffusion can be efficiently promoted.
Collapse
Affiliation(s)
- Xiaoyu Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Huimin Chen
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Chenyu Yang
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China. and State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Qin Y, Ou Z, Xu C, Zhang Z, Yi J, Jiang Y, Wu J, Guo C, Si Y, Zhao T. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization. NANOSCALE RESEARCH LETTERS 2021; 16:92. [PMID: 34032941 PMCID: PMC8149500 DOI: 10.1186/s11671-021-03548-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The increasing popularity of wearable electronic devices has led to the rapid development of flexible energy conversion systems. Flexible rechargeable zinc-air batteries (ZABs) with high theoretical energy densities demonstrate significant potential as next-generation flexible energy devices that can be applied in wearable electronic products. The design of highly efficient and air-stable cathodes that can electrochemically catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable but challenging. Flexible carbon-based catalysts for ORR/OER catalysis can be broadly categorized into two types: (i) self-supporting catalysts based on the in situ modification of flexible substrates; (ii) non-self-supporting catalysts based on surface coatings of flexible substrates. Methods used to optimize the catalytic performance include doping with atoms and regulation of the electronic structure and coordination environment. This review summarizes the most recently proposed strategies for the synthesis of designer carbon-based electrocatalysts and the optimization of their electrocatalytic performances in air electrodes. And we significantly focus on the analysis of the inherent active sites and their electrocatalytic mechanisms when applied as flexible ZABs catalysts. The findings of this review can assist in the design of more valuable carbon-based air electrodes and their corresponding flexible ZABs for application in wearable electronic devices.
Collapse
Affiliation(s)
- Yuan Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zihao Ou
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chuanlan Xu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Zubang Zhang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Junjie Yi
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jinyan Wu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chaozhong Guo
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yujun Si
- College of Chemistry and Materials Science, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Tiantao Zhao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
13
|
Gupta GK, Sagar P, Pandey SK, Srivastava M, Singh AK, Singh J, Srivastava A, Srivastava SK, Srivastava A. In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance. NANOSCALE RESEARCH LETTERS 2021; 16:85. [PMID: 33987738 PMCID: PMC8119520 DOI: 10.1186/s11671-021-03545-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 06/01/2023]
Abstract
Herein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV-visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer-Emmett-Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g-1 in the potential window ranging from - 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg-1 and power density of ~ 277.92 W kg-1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.
Collapse
Affiliation(s)
- Gopal Krishna Gupta
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit Kumar Pandey
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - A K Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jai Singh
- Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Amit Srivastava
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India.
| |
Collapse
|
14
|
Novel electrode composites of mixed bismuth-iron oxide / graphene utilizing for photo assisted supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137412] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Han T, Liu H, Wang S, Chen S, Yang K. Research on the Preparation and Spectral Characteristics of Graphene/TMDs Hetero-structures. NANOSCALE RESEARCH LETTERS 2020; 15:219. [PMID: 33237351 PMCID: PMC7688792 DOI: 10.1186/s11671-020-03439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The Van der Waals (vdWs) hetero-structures consist of two-dimensional materials have received extensive attention, which is due to its attractive electrical and optoelectronic properties. In this paper, the high-quality large-size graphene film was first prepared by the chemical vapor deposition (CVD) method; then, graphene film was transferred to SiO2/Si substrate; next, the graphene/WS2 and graphene/MoS2 hetero-structures were prepared by the atmospheric pressure chemical vapor deposition method, which can be achieved by directly growing WS2 and MoS2 material on graphene/SiO2/Si substrate. Finally, the test characterization of graphene/TMDs hetero-structures was performed by AFM, SEM, EDX, Raman and PL spectroscopy to obtain and grasp the morphology and luminescence laws. The test results show that graphene/TMDs vdWs hetero-structures have the very excellent film quality and spectral characteristics. There is the built-in electric field at the interface of graphene/TMDs heterojunction, which can lead to the effective separation of photo-generated electron-hole pairs. Monolayer WS2 and MoS2 material have the strong broadband absorption capabilities, the photo-generated electrons from WS2 can transfer to the underlying p-type graphene when graphene/WS2 hetero-structures material is exposed to the light, and the remaining holes can induced the light gate effect, which is contrast to the ordinary semiconductor photoconductors. The research on spectral characteristics of graphene/TMDs hetero-structures can pave the way for the application of novel optoelectronic devices.
Collapse
Affiliation(s)
- Tao Han
- Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Hongxia Liu
- Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Shulong Wang
- Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Shupeng Chen
- Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Kun Yang
- Key Laboratory for Wide-Bandgap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an, 710071, China
| |
Collapse
|
17
|
Subramanian B, Veerappan M, Rajan K, Chen Z, Hu C, Wang F, Wang F, Yang M. Fabrication of Hierarchical Indium Vanadate Materials for Supercapacitor Application. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000002. [PMID: 33163224 PMCID: PMC7607248 DOI: 10.1002/gch2.202000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Transition metal orthovanadates are emerging 2D materials for promising electrochemical energy storage applications. Facile hydrothermal method for nanocrystalline indium vanadate (InVO4) semiconducting materials' fabrication is economical because of its direct chemical synthesis. X-ray diffraction studies, field emission scanning electron microscope (SEM) images, transmission electron microscopy (TEM), and photoelectron X-ray spectrum are used to describe the semiconductor materials as synthesized. InVO4 microspheres have attracted a lot of attention in the energy and environmental sector. These microsphere-derived semiconductor materials are recognized to offer the advantages of their large surface area, tunable pore sizes, enhanced light absorption, efficient carrier (electron-hole) separation, superior electronic and optical behavior, and high durability. From the results of SEM and TEM, InVO4 shows a microsphere construction with a mixture of nanosized particles. Diffuse reflectance UV-visible measurements are used to determine the bandgap, and it is found to be 2.1 eV for InVO4. The electrochemical analysis reveals a superior performance of the pseudocapacitor with hydrothermally derived microspheres of InVO4. Alongside an improved pseudocapacity, developed after 4000 cycles, it has excellent cycling stability with a retention of ≈94% of its original specific capacitance efficiency.
Collapse
Affiliation(s)
- Balachandran Subramanian
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Manimuthu Veerappan
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Karthikeyan Rajan
- Engineering Research Center for Hydrogen Energy Materials and DevicesCollege of Rare Earths (CORE)Jiangxi University of Science and TechnologyGanzhouJiangxi341000P. R. China
| | - Zheming Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| | - Chengzhi Hu
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Fei Wang
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Feng Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| |
Collapse
|
18
|
Zhang B, Yu C, Li Z. Enhancing the Electrochemical Properties of LaCoO 3 by Sr-Doping, rGO-Compounding with Rational Design for Energy Storage Device. NANOSCALE RESEARCH LETTERS 2020; 15:184. [PMID: 32970256 PMCID: PMC7515996 DOI: 10.1186/s11671-020-03411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxides, as a kind of functional materials, have been widely studied in recent years due to its unique physical, chemical, and electrical properties. Here, we successfully prepared perovskite-type LaCoO3 (LCOs) nanomaterials via an improved sol-gel method followed by calcination, and investigated the influence of calcination temperature and time on the morphology, structure, and electrochemical properties of LaCoO3 nanomaterials. Then, based on the optimal electrochemical performance of LCO-700-4 electrode sample, the newly synthesized nanocomposites of Sr-doping (LSCO-0.2) and rGO-compounding (rGO@LCO) through rational design exhibited a 1.45-fold and 2.03-fold enhancement in its specific capacitance (specific capacity). The rGO@LCO electrode with better electrochemical performances was further explored by assembling rGO@LCO//rGO asymmetric supercapacitor system (ASS) with aqueous electrolyte. The result showed that the ASS delivers a high energy density of 17.62 W h kg-1 and an excellent cyclic stability with 94.48% of initial capacitance after 10,000 cycles, which are good electrochemical performances among aqueous electrolytes for green and new efficient energy storage devices.
Collapse
Affiliation(s)
- Bin Zhang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chuanfu Yu
- Henan Aerospace Hydraulic & Pneumatic Technology Co., Ltd., Zhengzhou, 450011, China
| | - Zijiong Li
- School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Liang X, Xue D. Ce(OH) 3 as a novel negative electrode material for supercapacitors. NANOTECHNOLOGY 2020; 31:374003. [PMID: 32464606 DOI: 10.1088/1361-6528/ab9787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel electrode materials with desired specific capacitances are needed for supercapacitors. Rare-earth (RE)-based materials are fascinating in the field of catalysis and energy. Herein, a series of hydroxides including La, Ce, Pr and Nd was synthesized via in situ precipitation. Interestingly, only Ce(OH)3 showed a redox peak in both positive and negative ranges. The other RE hydroxides exhibited a redox peak only in the positive range. Therefore, in order to certify that Ce(OH)3 can be used as a negative electrode, symmetrical supercapacitors consisting of Ce(OH)3 as both positive and negative electrodes were assembled, and showed a voltage window of 1.3 V. Moreover, asymmetrical supercapacitors were successfully fabricated, in which the positive electrode was composed of La(OH)3, Pr(OH)3 or Nd(OH)3. These results may pave the way to novel negative electrode materials.
Collapse
Affiliation(s)
- Xitong Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | |
Collapse
|
20
|
Hou L, Yang W, Xu X, Deng B, Tian J, Wang S, Yang F, Li Y. In-situ formation of oxygen-vacancy-rich NiCo2O4/nitrogen-deficient graphitic carbon nitride hybrids for high-performance supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135996] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Pseudocapacitive performance of Mn3O4–SnO2 hybrid nanoparticles synthesized via ultrasonication approach. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01421-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Manohara Babu I, William JJ, Muralidharan G. AgCoO
2
−Co
3
O
4
/CMC Cloudy Architecture as High Performance Electrodes for Asymmetric Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.201902046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I. Manohara Babu
- Department of PhysicsThe Gandhigram Rural Institute – Deemed to be University Gandhigram 624302, Tamil Nadu India
| | - J. Johnson William
- Department of PhysicsThe Gandhigram Rural Institute – Deemed to be University Gandhigram 624302, Tamil Nadu India
| | - G. Muralidharan
- Department of PhysicsThe Gandhigram Rural Institute – Deemed to be University Gandhigram 624302, Tamil Nadu India
| |
Collapse
|
24
|
Xu L, Ma L, Rujiralai T, Ling Y, Chen Z, Liu L, Zhou X. Molybdenum selenide nanosheets with enriched active sites supported on titanium mesh as a superior binder-free electrode for electrocatalytic hydrogen evolution and supercapacitor. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Sun J, Yao J, Liu Y, Lin S, Xu Z, Li L. Formation of Hollow Co‐Ni‐S Nanowedges Arrays via Sulfidation‐etch of ZIF‐L for Advanced Hybrid Supercapacitor. ChemistrySelect 2020. [DOI: 10.1002/slct.201904496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| | - Jing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| | - Ying Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| | - Shuangyan Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| | - Zhikun Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University No. 1 Shida Road, Limin Economic Development Zone Harbin 150025 PR China
| |
Collapse
|
26
|
|
27
|
Eraković S, Pavlović MM, Stopić S, Stevanović J, Mitrić M, Friedrich B, Panić V. Interactive promotion of supercapacitance of rare earth/CoO3-based spray pyrolytic perovskite microspheres hosting the hydrothermal ruthenium oxide. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Kong S, Jin B, Quan X, Zhang G, Guo X, Zhu Q, Yang F, Cheng K, Wang G, Cao D. MnO2 nanosheets decorated porous active carbon derived from wheat bran for high-performance asymmetric supercapacitor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
|
30
|
Na0.11WO3 nanoflake arrays grown on Ni foam for high-performance supercapacitor. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04307-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Chen L, Li D, Zheng X, Chen L, Zhang Y, Liang Z, Feng J, Si P, Lou J, Ci L. Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Sun J, Yang S, Ai J, Yang C, Jia Q, Cao B. Hierarchical Porous Activated Carbon Obtained by a Novel Heating‐Rate‐Induced Method for Lithium‐Ion Capacitor. ChemistrySelect 2019. [DOI: 10.1002/slct.201900366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Sun
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Shuhua Yang
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Jingui Ai
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Chao Yang
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| | - Qi Jia
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| | - Bingqiang Cao
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| |
Collapse
|
33
|
On-chip suspended gold nanowire electrode with a rough surface: Fabrication and electrochemical properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Arunachalam S, Kirubasankar B, Rajagounder Nagarajan E, Vellasamy D, Angaiah S. A Facile Chemical Precipitation Method for the Synthesis of Nd(OH)
3
and La(OH)
3
Nanopowders and their Supercapacitor Performances. ChemistrySelect 2018. [DOI: 10.1002/slct.201803151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Subasri Arunachalam
- Electro-Materials Research LaboratoryCentre for Nanoscience and TechnologyPondicherry University Puducherry – 605 014, India
- Department of ChemistryKalasalingam University Krishnankovil – 626 126 India
| | - Balakrishnan Kirubasankar
- Electro-Materials Research LaboratoryCentre for Nanoscience and TechnologyPondicherry University Puducherry – 605 014, India
| | | | - Devadoss Vellasamy
- Department of ChemistryKalasalingam University Krishnankovil – 626 126 India
| | - Subramania Angaiah
- Electro-Materials Research LaboratoryCentre for Nanoscience and TechnologyPondicherry University Puducherry – 605 014, India
| |
Collapse
|
35
|
Ghouri ZK, Elsaid K, Abdala A, Abdullah AM, Akhtar MS. CePd‐Nanoparticles‐Incorporated Carbon Nanofibers as Efficient Counter Electrode for DSSCs. ChemistrySelect 2018. [DOI: 10.1002/slct.201802507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zafar Khan Ghouri
- Chemical Engineering ProgramTexas A&M University at Qatar, P.O. 23874, Doha Qatar
| | - Khaled Elsaid
- Chemical Engineering ProgramTexas A&M University at Qatar, P.O. 23874, Doha Qatar
| | - Ahmed Abdala
- Chemical Engineering ProgramTexas A&M University at Qatar, P.O. 23874, Doha Qatar
| | | | - Mohammed Shaheer Akhtar
- New & Renewable Energy Material Development Center (NewREC)Chonbuk National University, Jeonju 561–756 Republic of Korea
| |
Collapse
|