1
|
Chen H, Wu H, Dai Y, Qiu F, Zhang T. A heterogeneous polyurethane hybrid foam with enhanced demulsification and dynamic oil cleaning for continuous emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024:136336. [PMID: 39487077 DOI: 10.1016/j.jhazmat.2024.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Here, a top-down strategy was presented to fabricate a heterogeneous polyurethane hybrid foam with independent oil-absorbing frameworks and uninterrupted water transport channels for continuous emulsion separation. A commercial polyurethane foam (PUF) was hydrophobically modified to develop oil-absorbing frameworks (HPUF). Superhydrophilic carbon nanotubes/cellulose nanofibers (CNTs/CNFs) aerogels were assembled in the voids of the HPUF to establish independent water transport channels, forming a heterogeneous polyurethane hybrid foam (CHPUF). This design endowed the CHPUF with a heterogeneous wetting structure formed by the hydrophobic HPUF and the hydrophilic CNTs/CNFs aerogels, which allowed it to exhibit super hydrophilicity and underwater oil-absorbing properties. The underwater oil-absorbing properties can promote the dynamic cleaning of oil contamination at the separation interface to improve the continuity of emulsion separation. Meanwhile, the heterogeneous wetting structure of the CHPUF and photothermal-induced effect of CNTs synergistically enhanced their demulsification capability. Leveraging these structural and functional attributes, the CHPUF have demonstrated exceptional potential in continuous emulsion separation, demonstrating a robust separation capacity with a single separation volume surpassing 3000 mL and remarkable recyclability, evidenced by over five stable separation cycles each maintaining the separation efficiency of 98 %. The CHPUF have exhibited promising separation suitability for multiple surfactant-stabilized oil-in-water emulsions, achieving over 800 L·m-2·h-1and 99 % of separation flux and efficiency, respectively. Consequently, the CHPUF with dynamic oil cleaning and enhanced demulsification display great potential for treating oily wastewater, while inspiring the development of novel 3D superwetting materials, propelling their application in environmental remediation.
Collapse
Affiliation(s)
- Hao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haonan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Lin W, Wang J, Wang S. Numerical and experimental investigation of ultrasound effects on filtration process in wire-wrapped filter tube. ULTRASONICS SONOCHEMISTRY 2024; 109:106991. [PMID: 39096847 PMCID: PMC11345299 DOI: 10.1016/j.ultsonch.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 08/05/2024]
Abstract
Refinery filtration processes often face challenges related to rapidly increasing permeate pressure differentials and the consequent need for frequent back-flushing. This study investigates the impact of high-intensity immersed sonotrode ultrasound device on flow patterns to address these issues, both numerically and experimentally. Numerical simulations reveal that ultrasound promotes axial circular mixing of the bulk fluid, increasing average flow velocities around the filter tube from 5.11 × 10-5 m/s to 8.76 × 10-3-6.09 × 10-2 m/s, thereby facilitating cleansing of filter tube surfaces. Additionally, high-frequency pressure fluctuations contribute to enhancing the filtration process during positive pressure phases, while robust online back-flushing effects are generated during negative pressure phases. Although the wire-wrapped filter tube attenuates ultrasound energy as it penetrates the tube gaps, ultrasound still induces turbulent mixing inside and outside the filter tubes, aiding in the removal of impurities from the gaps. The utilization of ultrasound is demonstrated to not inflict harm on upstream and downstream facilities. Experimental results demonstrate that ultrasound-assisted filtration with 600 W and 1000 W power inputs reduces filtration pressure differences by 18 % and 73 %, respectively, affirming ultrasound's effectiveness in mitigating and preventing blockages, highlighting its significance for industrial applicability.
Collapse
Affiliation(s)
- Weixiang Lin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiarui Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Simin Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Khurram, Ghaffar A, Zulfiqar S, Khan M, Latif M, Cochran EW. Synthesis of polyaniline-coated composite anion exchange membranes based on polyacrylonitrile for the separation of tartaric acid via electrodialysis. RSC Adv 2024; 14:29648-29657. [PMID: 39297034 PMCID: PMC11409453 DOI: 10.1039/d4ra05508j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing need to tackle major societal challenges such as environmental sustainability and resource scarcity has heightened global interest in green and efficient separation technologies. The separation of organic acids, particularly tartaric acid, holds significant industrial importance in the food and pharmaceutical sectors. Purifying tartaric acid is crucial due to its roles as a chiral catalyst, antioxidant, and stabilizer, which are vital for ensuring product quality and efficiency. In this study, we synthesized heterogeneous anion exchange membranes by casting a solution of polyacrylonitrile (PAN) homogeneously dispersed with micronized anion exchange resin [polystyrene-divinylbenzene-trimethyl ammonium chloride (PS-DVB-TAC)]. These membranes were further coated with polyaniline (PANI) through in situ polymerization at different time intervals such as 2, 12, and 24 h. Cation exchange membranes were also prepared by solution casting of PAN dispersed with micronized cation exchange resin, sulfonated poly-styrene-co-divinylbenzene, and SPS-DVB. These synthesized anion exchange membranes with and without a PANI coating were examined for their separation performance of tartaric acid, along with the cation exchange membranes in a four-compartment electrodialyser at a constant voltage. The newly fabricated membranes were characterized by different techniques, including attenuated total reflectance-Fourier transform infrared spectroscopy for functional group analysis, scanning electron microscopy for their surface morphology, and the four-probe method for electrical conductivity. In addition, ion exchange capacity and water uptake have been measured. The electrodialysis experiments showed that 14.82 wt% of tartrate ions moved into the product compartment through the uncoated anion exchange membrane within 30 min at a voltage of 30 V. Under the same conditions, membranes coated with PANI at 2, 12, and 24 h raised the separation efficiency to 21.19%, 34.13%, and 37.21%, respectively. Findings indicate that membranes coated with PANI for extended periods demonstrate superior separation efficiency for tartaric acid. Consequently, this energy-efficient method shows significant potential for application in the food and pharmaceutical industries for separating tartaric acid and other organic and amino acids. This research can advance practical and sustainable separation technologies, addressing critical societal issues like resource efficiency and environmental sustainability.
Collapse
Affiliation(s)
- Khurram
- Department of Chemistry, Government Graduate College Ravi Road Shahdara Lahore-54950 Pakistan
| | - Abdul Ghaffar
- DIC Pakistan Limited Shahrah-e-Roomi, P. O Amer Sidhu Lahore-54760 Pakistan
| | - Sonia Zulfiqar
- Department of Physical Sciences, Lander University 320 Stanley Ave Greenwood South Carolina 29649 USA
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
| | - Muzzamil Khan
- DIC Pakistan Limited Shahrah-e-Roomi, P. O Amer Sidhu Lahore-54760 Pakistan
| | - Muhammad Latif
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University Madinah Kingdom of Saudi Arabia
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| |
Collapse
|
4
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Liu Y, Zhang J, Cheng D, Guo W, Liu X, Chen Z, Zhang Z, Ngo HH. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173530. [PMID: 38815818 DOI: 10.1016/j.scitotenv.2024.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.
Collapse
Affiliation(s)
- Yufei Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhijie Chen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huu Hao Ngo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
6
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Kafle SR, Adhikari S, Shrestha R, Ban S, Khatiwada G, Gaire P, Tuladhar N, Jiang G, Tiwari A. Advancement of membrane separation technology for organic pollutant removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2290-2310. [PMID: 38747950 DOI: 10.2166/wst.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/11/2024] [Indexed: 05/25/2024]
Abstract
In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.
Collapse
Affiliation(s)
- Saroj Raj Kafle
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA; Equally contributed to this work
| | - Sangeet Adhikari
- School of Sustainable Engineering and the Built Environment, Tempe, AZ 85281, USA; Equally contributed to this work
| | - Rakesh Shrestha
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Sagar Ban
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Gaurav Khatiwada
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Pragati Gaire
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Nerisha Tuladhar
- Department of Chemical Science and Engineering, Kathmandu University, P.O. BOX 6250, Dhulikhel, Kavre, Nepal
| | - Guangming Jiang
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Ananda Tiwari
- University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland; Department of Health Security, Water Microbiology laboratory, Finnish Institute for Health and Welfare, Kuopio, Finland; Equally contributed to this work. E-mail:
| |
Collapse
|
8
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Fang G, Wang J, Li M, Yang Q, Huang H. In-situ cathodic electrolysis coupled with hydraulic backwash inhibited biofilm formation on a backwashable carbon nanotube membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163130. [PMID: 37001670 DOI: 10.1016/j.scitotenv.2023.163130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Electro-coupled membrane filtration (ECMF) is an innovative and green technology for water and wastewater treatment. However, the dynamics of biofouling development in the ECMF system has yet been determined. This fundamental question was systematically investigated in this study through laboratory dead-end ECMF experiments. It was found that the ECMF process with an applied voltage of 3 V and a backwash interval of 60 min was capable of completely eradicating membrane biofouling in an extended filtration time of 1450 min. In contrast, membrane biofouling was much severer with a longer backwash interval of 720 min or without backwash. The complemental permeate analysis and membrane characterization results revealed that biofouling during ECMF involved two sequential stages. During the first stage, dead bacteria and their degradation debris formed a loose deposit layer on the membrane surface. The continuous accumulation of this layer decreased the electrochemical performance of the membrane cathode. As such, bacteria in the top deposit layer proliferated and secreted extracellular polymeric substances, which led to irreversible fouling in the second stage. Therefore, timely removal of the initial deposit layer by hydraulic backwash was crucial in preventing irreversible membrane biofouling. These findings provided novel insights into the synergistic effects of cathodic electrolysis and hydraulic backwash for biofouling mitigation.
Collapse
Affiliation(s)
- Guiyin Fang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Mengya Li
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Qing Yang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiou Huang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; Department of Environmental Health and Sciences, The Johns Hopkins University, 3400 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Zang L, Yang XL, Xu H, Deng YJ, Yue ZX, Song HL. Alleviating membrane fouling by enhanced bioelectricity generation via internal reflux of sludge mixed liquor in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Chen L, Yin Z, Li F, Chen Z. Treatment of simulated saline brine water by membrane distillation process enhanced through alternating current electric field. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Synergistic Effect of Alternating Current-based Electric and Acoustic Fields on Flux Recovery in Crossflow Microfiltration of Synthetic Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Gao Z, Gu X, Liu C, Zhang Z, Shao H, Zhang Q, Long M, Guo X. An internal electrostatic force-driven superoleophilic membrane-magnetic nanoparticles coupling system for superefficient water-in-oil emulsions separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
15
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
16
|
Tang J, Zhang C, Quan B, Tang Y, Zhang Y, Su C, Zhao G. Electrocoagulation coupled with conductive ceramic membrane filtration for wastewater treatment: Toward membrane modification, characterization, and application. WATER RESEARCH 2022; 220:118612. [PMID: 35613483 DOI: 10.1016/j.watres.2022.118612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane separation is an effective solution for pollutant removal, however, achieving high permeability and antifouling ability remains a pressing challenge for its widespread application. In this study, a novel method of coating flat ceramic membranes (CMs) with a conductive film (Sb-SnO2) was developed to enhance the filtration and antifouling performance of CMs when the membrane filtration was coupled with electrocoagulation. After comparing the parameters, including the film sheet resistance and pure water flux, with those of other coating methods (i.e., gel coating and immersion hydrolysis), a well-fixed conductive coating with optimal permeability and stability was generated using spray pyrolysis with a substrate ceramic membrane surface temperature of 475 °C, precursor concentration of 0.5 M (calculate as SnO2), and spraying amount of 50 mL (120 cm2), during membrane modification. Batch filtration experiments using wastewater from the mechanical industry demonstrated that the conductive ceramic membrane (CCM) cathode integrated with electrocoagulation at an electric field of 2.8 V/cm (3.0 mA/cm2) achieved permeate fluxes that were 0.34, 0.70, 0.75 and 1.41 times higher than those of sole CM separation after four cycles. Moreover, the membrane separation process was dominated by the standard pore-blocking model, and its correlation coefficient decreased with the exertion of the electric field, indicating that membrane filtration fouling changed from irreversible to reversible. This CCM combined with electrocoagulation exhibited significant potential for alleviating membrane fouling and widespread application, and could act as a promising technology for industrial wastewater treatment.
Collapse
Affiliation(s)
- Jiawei Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China; National Institute of Low Carbon and Clean Energy, Beijing 102211, China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; Zhongguancun Summit Enviro-Protection Co., Ltd, Beijing 100070, China.
| | - Bingxu Quan
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yuanhui Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd, Beijing 100070, China
| | - Chen Su
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China; National Institute of Low Carbon and Clean Energy, Beijing 102211, China
| | - Guifeng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| |
Collapse
|
17
|
Yu B, Sun J, Zhao K, Ma F, Sun L, Shao J, Tian J, Hu C. Mitigating membrane fouling by coupling coagulation and the electrokinetic effect in a novel electrocoagulation membrane cathode reactor. WATER RESEARCH 2022; 217:118378. [PMID: 35381555 DOI: 10.1016/j.watres.2022.118378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Membrane reactors with efficient antifouling and low maintenance are desirable for distributed membrane water treatment. In this study, a novel membrane separation reactor with an Al anode and a conductive membrane as the cathode was built to develop a chemical-free method for mitigating membrane fouling via electrocoagulation coupled with the electrokinetic effect. The electrostatic repulsion between humic acid (HA) and the membrane cathode reduced the adhesion of HA foulants on the membrane, thereby contributing to antifouling in the initial stage. Electrocoagulation and polarization induced by the electric field enlarged the HA-Al flocs, which prevented membrane pore blocking and facilitated the formation of a porous cake layer, thereby leading to a high water flux of the electrocoagulation membrane cathode reactor (ECMCR) in the stable stage. The bubbles from hydrogen evolution on the membrane cathode scoured the HA foulants and washed out the dense cake layer, thereby playing an important role in membrane fouling mitigation. Compared with membrane filtration, the membrane cathode reactor, membrane anode reactor, and HA removal of the ECMCR increased by 9.6, 8.3, and 2.8 times, respectively, whereas the transmembrane pressure decreased by 84.6%, 21.5%, and 63.0%, respectively. The synergy of electrocoagulation and the electrokinetic effect provides the ECMCR with a feasible method of antifouling and improved effluent quality with low maintenance.
Collapse
Affiliation(s)
- Boyang Yu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Ma
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| | - Lingkai Sun
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| | - Junrong Shao
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Hou B, Liu X, Zhang R, Li Y, Liu P, Lu J. Investigation and evaluation of membrane fouling in a microbial fuel cell-membrane bioreactor systems (MFC-MBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152569. [PMID: 34973325 DOI: 10.1016/j.scitotenv.2021.152569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Two membrane bioreactors with and without adding an electric circuit (named as MFC-MBR and C-MBR, respectively) were established to investigate the effects of micro-electric field on membrane fouling. With the aeration rate of 1.5 L/min, the synergistic effect of aeration and micro-electric field was the best in reducing membrane fouling and COD in treatment of a simulated phenol wastewater. Compared with C-MBR, the running time of MFC-MBR was extended for 16 days. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (SEM-EDX) demonstrated that less foulants were attached to the membrane and the attachment was loosend in MFC-MBR. The decreased absolute value of zeta potential indicated repulsion among the negatively-charged sludge particles was reduced and flocculation of the sludge was improved, which alleviated the membrane fouling. The soluble microbial products (SMP) and loosely-bound extracellular polymeric substances (LB-EPS) were also decreased in MFC-MBR. It was found that migration and neutralization of the negatively-charged particles, and degradation of microorganisms contributed to the alleviation of membrane fouling. Moreover, the decreases of carbohydrates in LB-EPS led to higher protein/carbohydrates (PN/PS) ratio, which was a key parameter for alleviating membrane fouling. Meanwhile, the increase of tightly bound extracellular polymeric substances (TB-EPS) could also slow down membrane fouling. Because TB-EPS can be used as a binder to strengthen the flocculation of sludge particles.
Collapse
Affiliation(s)
- Bin Hou
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Xiaoyu Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Rong Zhang
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Ying Li
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Pengxiao Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Jing Lu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
19
|
|
20
|
Du Z, Ji M, Li R. Effects of different Ca 2+ behavior patterns in the electric field on membrane fouling formation and removal of trace organic compounds. J Environ Sci (China) 2022; 111:292-300. [PMID: 34949359 DOI: 10.1016/j.jes.2021.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/14/2023]
Abstract
The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.
Collapse
Affiliation(s)
- Zhen Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. SEPARATIONS 2021. [DOI: 10.3390/separations9010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.
Collapse
|
22
|
Feng M, Lee S, Chan C, Zhou R. Molecular Insight into AC Electric Field Enhanced Removal of Protein Aggregates from a Material Surface. J Phys Chem B 2021; 125:12147-12153. [PMID: 34714645 DOI: 10.1021/acs.jpcb.1c05682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biofouling, caused by unwanted accumulation of the biological molecules on the material surface, is a common problem when medical devices are planted in the human body. Application of an electric field was first suggested in the 1960s along with many other approaches to deactivate the biofouling process. There are experiments showing a higher efficiency in reducing the biofouling using the alternating current (AC) compared to the direct current (DC). Here, using molecular dynamics (MD) simulations, we compared the binding stability of a single protein molecule on a graphene surface with either an AC or a DC field was applied. We first showed that the protein molecule, initially attached to the graphene surface, will spontaneously be desorbed by the applied AC electric field, while it remains intact under the DC field of the same voltage. We then revealed that the desorption of the protein by the AC electric field is kinetically controlled. As the orientation of the protein changed alongside the reversing electric field, the protein-graphene interface would be destabilized the most if the AC frequency was close to that of the relaxation of the protein dipole moment (i.e., resonance).
Collapse
Affiliation(s)
- Mei Feng
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, 310027 Hangzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Chun Chan
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, 310027 Hangzhou, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, 310027 Hangzhou, China.,Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
23
|
Pervov AG, Andrianov AP, Efremov RV, Golovesov VA. New Technique for Reducing Reverse Osmosis Concentrate Discharge. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Wang L, Boussetta N, Lebovka N, Vorobiev E. Purification of polyphenols from apple skins by membrane electro-filtration. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Ying XB, Huang JJ, Shen DS, Feng HJ, Jia YF, Guo QQ. Fouling behaviors are different at various negative potentials in electrochemical anaerobic membrane bioreactors with conductive ceramic membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143199. [PMID: 33234267 DOI: 10.1016/j.scitotenv.2020.143199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling remains a critical challenge to the practical application of anaerobic membrane bioreactor (AnMBR). To address this challenge, a conductive ceramic membrane was prepared for fouling control in AnMBR. By using the conductive membranes, the anti-fouling performances were enhanced about 3 times at potentials below -1.0 V vs Ag/AgCl compared to the conventional AnMBR. The particle size distributions and the electric field calculations suggest that such an enhancement was mainly attributed to the increased particle sizes of foulants in the supernatant and the electric field forces. Moreover, the scanning electron microscope and confocal laser scanning microscope results show that the conductive membrane at -1.0 V could increase the porosity of the gel layer on the surface, whereas the conductive membrane at -2.0 V could inhibit the activity of adhering bacteria. Surprisingly, membrane fouling of electrically-assisted AnMBR (AnEMBR) at -0.5 V was increased, which was attributed to a dense biofilm-like structure formation. Such a result is contrary to the conventional cognition that negative potential could mitigate the membrane fouling. Overall, this work supplements the understanding of the anti-fouling effects of the electric field in AnEMBR, and provides supplementary information for the engineering application of AnEMBR.
Collapse
Affiliation(s)
- Xian-Bin Ying
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jing-Jing Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dong-Sheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| | - Yu-Feng Jia
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, PR China
| | - Qiao-Qi Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| |
Collapse
|
26
|
Yi X, Zhang M, Song W, Wang X. Effect of Initial Water Flux on the Performance of Anaerobic Membrane Bioreactor: Constant Flux Mode versus Varying Flux Mode. MEMBRANES 2021; 11:membranes11030203. [PMID: 33805677 PMCID: PMC7999970 DOI: 10.3390/membranes11030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have aroused growing interest in wastewater treatment and energy recovery. However, serious membrane fouling remains a critical hindrance to AnMBRs. Here, a novel membrane fouling mitigation via optimizing initial water flux is proposed, and its feasibility was evaluated by comparing the membrane performance in AnMBRs between constant flux and varying flux modes. Results indicated that, compared with the constant flux mode, varying flux mode significantly prolonged the membrane operating time by mitigating membrane fouling. Through the analyses of fouled membranes under two operating modes, the mechanism of membrane fouling mitigation was revealed as follows: A low water flux was applied in stage 1 which slowed down the interaction between foulants and membrane surface, especially reduced the deposition of proteins on the membrane surface and formed a thin and loose fouling layer. Correspondingly, the interaction between foulants was weakened in the following stage 2 with a high water flux and, subsequently, the foulants absorbed on the membrane surface was further reduced. In addition, flux operating mode had no impact on the contaminant removal in an AnMBR. This study provides a new way of improving membrane performance in AnMBRs via a varying flux operating mode.
Collapse
|
27
|
Wang Y, Wang J, Ding Y, Zhou S, Liu F. In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Zhang Y, Wang T, Meng J, Lei J, Zheng X, Wang Y, Zhang J, Cao X, Li X, Qiu X, Xue J. A novel conductive composite membrane with polypyrrole (PPy) and stainless-steel mesh: Fabrication, performance, and anti-fouling mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Alayande AB, Goh K, Son M, Kim CM, Chae KJ, Kang Y, Jang J, Kim IS, Yang E. Recent Progress in One- and Two-Dimensional Nanomaterial-Based Electro-Responsive Membranes: Versatile and Smart Applications from Fouling Mitigation to Tuning Mass Transport. MEMBRANES 2020; 11:5. [PMID: 33375122 PMCID: PMC7822182 DOI: 10.3390/membranes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Membrane technologies are playing an ever-important role in the field of water treatment since water reuse and desalination were put in place as alternative water resources to alleviate the global water crisis. Recently, membranes are becoming more versatile and powerful with upgraded electroconductive capabilities, owing to the development of novel materials (e.g., carbon nanotubes and graphene) with dual properties for assembling into membranes and exerting electrochemical activities. Novel nanomaterial-based electrically responsive membranes have been employed with promising results for mitigating membrane fouling, enhancing membrane separation performance and self-cleaning ability, controlling membrane wettability, etc. In this article, recent progress in novel-nanomaterial-based electrically responsive membranes for application in the field of water purification are provided. Thereafter, several critical drawbacks and future outlooks are discussed.
Collapse
Affiliation(s)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
| | - Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea;
| | - Chang-Min Kim
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), Gyeonggi-do 2066, Korea;
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Yesol Kang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - In S. Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Korea
| |
Collapse
|
31
|
Xu X, Zhang H, Gao T, Wang Y, Teng J, Lu M. Customized thin and loose cake layer to mitigate membrane fouling in an electro-assisted anaerobic forward osmosis membrane bioreactor (AnOMEBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138663. [PMID: 32361430 DOI: 10.1016/j.scitotenv.2020.138663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic forward osmosis membrane bioreactor (AnOMBR) is a potential wastewater treatment technology, due to its low energy consumption and high effluent quality. However, membrane fouling is still a considerable problem which causes dwindling of water flux and shortening the membrane lifetime. In this study, electro-assisted anaerobic forward osmosis membrane bioreactor (AnOMEBR) was developed to treat wastewater and mitigate membrane fouling, in which the conductive FO membrane was used both as the separation unit and cathode. The formation, development and alleviation of membrane fouling in AnOMEBR were investigated. The results showed that the soluble microbial products (SMP) content and the proteins/polysaccharides (PN/PS) value in AnOMEBR were 26% and 15% lower than that in AnOMBR, respectively. The absolute value of Zeta of sludge mixture in AnOMEBR was 1.2 times that of the AnOMBR. The increase in the interaction between the membrane surface and the negatively charged foulants could inhibit the adsorption of foulants on membrane surface in the initial stage of membrane fouling. The strong interaction among foulants further affected the composition, structure and thickness of the cake layer on the FO membrane surface. AnOMEBR with a shorter hydraulic retention time, a higher organic loading rate and a lower osmotic pressure difference, could still obtain a lower flux decline rate of 0.063 LMH/h, which was 35.7% lower than AnOMBR. The wastewater treatment capacity of AnOMEBR was nearly 1.5 times that of the AnOMBR. This work provides an efficient strategy for mitigating membrane fouling and improving wastewater treatment capacity.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Mengyang Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
32
|
Thombre NV, Gadhekar AP, Patwardhan AV, Gogate PR. Ultrasound induced cleaning of polymeric nanofiltration membranes. ULTRASONICS SONOCHEMISTRY 2020; 62:104891. [PMID: 31796332 DOI: 10.1016/j.ultsonch.2019.104891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/27/2019] [Accepted: 11/21/2019] [Indexed: 05/15/2023]
Abstract
Cleaning of the flat sheet nanofiltration membranes, using backflushing, chemical cleaning, and ultrasonication operated individually as well as in combination with chemicals, has been studied in the present work. Identical hydrophilic polyamide membranes were fouled individually using an aqueous solution containing a single dye, an aqueous solution containing a mixture of dyes, and a synthetically prepared petroleum refinery effluent. Effect of different parameters such as the concentration of cleaning solution, contact time, frequency, and power of ultrasound on the efficacy of membrane cleaning has been studied. Optimal cleaning was achieved under sonication conditions of frequency of 24 kHz and power dissipation of 135 W. It was demonstrated that application of sonication under optimum conditions without chemical agents, gave about 85% water flux recovery. In the case of combined chemical and ultrasonic treatment, it was clearly observed that the use of chemical agent increased the efficacy of ultrasonic cleaning. The hybrid method recovered the initial water flux to almost 90% based on the use of 1.0 M aqueous NaOH and 4 min of sonication. Overall, the use of aqueous NaOH in combination with sonication showed a better efficiency for cleaning than the individual processes thus demonstrating a new avenue for membrane cleaning.
Collapse
Affiliation(s)
- Nitin V Thombre
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Amit P Gadhekar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Anand V Patwardhan
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
33
|
Li B, Sun D, Li B, Tang W, Ren P, Yu J, Zhang J. One-Step Electrochemically Prepared Graphene/Polyaniline Conductive Filter Membrane for Permeation Enhancement by Fouling Mitigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2209-2222. [PMID: 32050074 DOI: 10.1021/acs.langmuir.9b03114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the electrofiltration process, membrane conductivity plays a decisive role in improving the antifouling performance of the membrane. In this paper, combining the preparation of graphene (Gr) with the fabrication of the Gr layer on the surface of a polyaniline (PANI) membrane, a graphene/PANI (Gr/PANI) conductive membrane was prepared creatively by the one-step electrochemical method. The properties of the as-prepared Gr/PANI membrane were studied systematically. By the tests of Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy, it was confirmed that Gr was successfully produced and was combined with the PANI membrane well. Field scanning electron microscopy with energy-dispersive X-ray analysis further confirmed that the top surface and the upper layer pore walls of the membrane were randomly covered by Gr. The antifouling performance of the prepared membrane was evaluated by studying the permeation flux of the yeast suspension, compared with the ones with no electric field: the total permeation flux at 1 V direct current (dc) increased by 109%; besides, under 1 V dc, the average flux of the Gr/PANI membrane was approximately 1.4 times that of the PANI membrane. This approach may provide a promising strategy for the combination of Gr with conductive polymers to produce separation membranes.
Collapse
Affiliation(s)
- Bojun Li
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - De Sun
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Bingbing Li
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Wenjing Tang
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Ping Ren
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Jingtong Yu
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Jinhui Zhang
- Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| |
Collapse
|
34
|
Bell D, Sengpiel R, Wessling M. Metallized hollow fiber membranes for electrochemical fouling control. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
36
|
Oshchepkov MS, Pervov AG, Golovesov VA, Rudakova GY, Kamagurov SD, Tkachenko SV, Andrianov AP, Popov KI. Use of a Fluorescent Antiscalant to Investigate Scaling of Reverse Osmosis Membranes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619040061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Li D, Ning XA, Huang Y, Li S. Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.172] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Efficient regeneration of activated carbon electrode by half-wave rectified alternating fields in capacitive deionization system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|