1
|
Aggarwal S, Awasthi SK. Emerging trends in the development and applications of triazine-based covalent organic polymers: a comprehensive review. Dalton Trans 2024; 53:11601-11643. [PMID: 38916403 DOI: 10.1039/d4dt01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Owing to unique structural features, triazine-based covalent organic polymers (COPs) have attracted significant attention and emerged as novel catalysts or support materials for an array of applications. Typically formed by reacting triazine-based monomers or the in situ creation of triazine rings from nitrile monomers, these COPs possess 2D/3D meso/microporous structures held together via strong covalent linkages. The quest for efficient, stable and recyclable catalytic systems globally necessitates the need for a well-structured and comprehensive review summarizing the synthetic methodologies and applications of triazine-based COPs. This review explores the various synthetic routes and applications of these COPs in photocatalysis, heterogeneous catalysis, electrocatalysis, adsorption and sensing. By exploring the latest advancements and future directions, this review offers valuable insights into the synthesis and applications of triazine-based COPs.
Collapse
Affiliation(s)
- Simran Aggarwal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
2
|
Li P, He B, Li X, Lin Y, Tang S. Chitosan-Linked Dual-Sulfonate COF Nanosheet Proton Exchange Membrane with High Robustness and Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302060. [PMID: 37096933 DOI: 10.1002/smll.202302060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
2D materials that can provide long-range ordered channels in thin-film form are highly desirable for proton exchange membranes (PEMs). Covalent organic framework nanosheets (CONs) are promising 2D materials possessing intrinsic porosity and high processability. However, the potential of CONs in PEMs is limited by loose sheet stacking and interfacial grain boundary, which lead to unsatisfied mechanical property and discontinuous conduction pathway. Herein, chitosan (CS), a natural polymer with rich NH2 groups, is designed as the linker of dual-sulfonate CONs (CON-2(SO3 H)) to obtain CON-2(SO3 H)-based membrane. Ultrathin CON-2(SO3 H) with high crystallinity and large lateral size is synthesized at water-octanoic acid interface. The high flexibility of CS chains and their electrostatic interactions with SO3 H groups of CON-2(SO3 H) enable effective connection of CON-2(SO3 H), thus endowing membrane dense structure and exceptional stability. The stacked CON-2(SO3 H) constructs regular hydrophilic nanochannels containing high-density SO3 H groups, and the electrostatic interactions between CON-2(SO3 H) and CS form interfacial acid-base pairs transfer channels. Consequently, CON-2(SO3 H)@CS membrane simultaneously achieves superior proton conductivity of 353 mS cm-1 (under 80 °C hydrated condition) and tensile strength of 95 MPa. This work highlights the advantages of proton-conducting porous CON-2(SO3 H) in advanced PEMs and paves a way in fabricating robust CON-based membranes for various applications.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Bo He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xuan Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Yunfei Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
3
|
Jin T, Su J, Luo Q, Zhu W, Lai H, Huang D, Wang C. Preparation of N,P Co-doped Porous Carbon Derived from Daylily for Supercapacitor Applications. ACS OMEGA 2022; 7:37564-37571. [PMID: 36312401 PMCID: PMC9608428 DOI: 10.1021/acsomega.2c04369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 06/01/2023]
Abstract
Biomass-derived activated carbon is a widely used electrode material for supercapacitors. One of the keys to preparing high-performance activated carbon is the selection of appropriate precursors. Daylily is a common edible herb and is widely planted in Asia. It is rich in nitrogen and phosphorus, so it can be used as a precursor of heteroatom-doped activated carbon. Herein, a daylily-derived porous carbon with a large specific surface area and high content of heteroatoms has been successfully prepared by a simple carbonization method. The as-prepared carbon materials showed a remarkable specific capacitance of 299.1 F/g at 0.5 A/g and excellent cycling stability of 99.6% after 4000 cycles at a current density of 1 A/g. Moreover, the assembled symmetric supercapacitor showed a high energy density of 21.6 Wh/kg at a power density of 598.2 W/kg in 6 M KOH electrolyte. These results demonstrate that the daylily-derived porous carbon is an excellent material for high-performance supercapacitors.
Collapse
|
4
|
Zhang X, Zhang Z, Xiong R, Xu X, Tian X, Wang C. High Temperature Modified Covalent Triazine Framework for High-efficiency and Ultra-cycle Stable Symmetric Supercapacitor. CHEM LETT 2022. [DOI: 10.1246/cl.220196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiangjing Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Rui Xiong
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xuefang Tian
- R&D Centre, Hebei Veyong Bio-Chemical Co. Ltd, Shijizhuang, 050031, China
| | - Chunyu Wang
- Hebei Vocational University of Industry and Technology, Shijiazhuang, 050091, China
| |
Collapse
|
5
|
Zhang Y, Zhang B, Chen L, Wang T, Di M, Jiang F, Xu X, Qiao S. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. J Colloid Interface Sci 2022; 606:1534-1542. [PMID: 34500156 DOI: 10.1016/j.jcis.2021.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023]
Abstract
A series of covalent triazine frameworks (CTFs) are prepared via ionothermal synthesis for supercapacitors. Due to the feature of adjustable pore structure and rich nitrogen, CTFs with regular structure can be used as a group of model compounds to further investigate the influence of pore size and heteroatom on supercapacitors. By comparing the performance of CTFs with different pore structures and nitrogen contents, the experimental results show that BPY-CTF with high specific surface area of 2278 m2 g-1, mesopores structure, and suitable nitrogen content displays a specific capacitance of 393.6 F g-1 at 0.5 A g-1. According to the results and analysis, the existence of mesopores largely enhance the contact area between the electrode material and electrolyte, and then boost the charge transfer. On the other hand, N-doping has a prominent effect on improving the Faradaic pseudo-capacitance and conductivity for CTF electrode materials. This work will inspire further research on the development of highly efficient electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Boying Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lifang Chen
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ting Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Mengyu Di
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fei Jiang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
6
|
State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Chen J, Peng H, Zhang Z, Zhang Z, Ni R, Chen Y, Chen P, Peng J. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Talanta 2021; 233:122524. [PMID: 34215027 DOI: 10.1016/j.talanta.2021.122524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks that attracted extensive attention in separation and analysis fields. Exploring facile and convenient strategy to prepare COPs-based mixed-mode stationary phases for high performance liquid chromatography (HPLC) has seriously lagged and has never been reported. Herein, we describe a facile in-situ grow strategy for fabrication of silica@COPs core-shell composites (SiO2@TpBD-(OH)2) as a novel mixed-mode stationary phase for HPLC. Owing to the co-existing of abundant hydroxyl, carbonyl, imine, cyclohexyl groups, and benzene rings in the skeleton of COPs shell, the developed mixed-mode stationary phase exhibits hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC)/ion-exchange chromatography (IEX) retention mechanisms. The content of acetonitrile, pH value, and salt concentration in the mobile phase were investigated on SiO2@TpBD-(OH)2 packed column. In comparison to conventional single-mode columns, the SiO2@TpBD-(OH)2 column showed flexible selectivity, enhanced separation performance, and superior resolution for benzene homologues, polycyclic aromatic hydrocarbons, nucleosides and bases, and acidic organic compounds. The column efficiency of p-nitrobenzoic acid was up to 54440 plates per meter. The packed column also possessed outstanding chromatographic repeatability for six nucleosides and bases with the RSDs of 0.07-0.23%, 0.58-1.77%, and 0.31-1.23% for retention time, peak area, and peak height, respectively. Besides, the SiO2@TpBD-(OH)2 column offered baseline separation of multiple organic pollutants in lake water, which verified its great potential in real sample analysis. Overall, the silica@COPs core-shell composites not only provide a new candidate of mixed-mode stationary phases, but also extend the potential application of COPs in separation science.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zilong Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhongying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ranxi Ni
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaping Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Piao Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Bian G, Yin J, Zhu J. Recent Advances on Conductive 2D Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006043. [PMID: 33624949 DOI: 10.1002/smll.202006043] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
As a burgeoning family of crystalline porous copolymers, covalent organic frameworks (COFs) allow precise atomic insertion of organic components in the topology construction to form periodic networks and ordered nanopores. Their 2D networks bear great similarities to graphene analogs, and therefore are essential additions to the 2D family. Here, the electronic properties of conductive 2D-COFs are reviewed and their bonding strategies and structural characteristics are examined in detail. The controlling approaches toward the morphologies of conductive 2D-COFs are further explored, followed by a discussion of their applications in field-effect transistors, photodetectors, sensors, catalysis, and energy storage. Finally, research challenges and forthcoming developments are projected. The resulting survey reveals that the extended porous 2D organic networks with conductive properties will provide great opportunities and essential innovations in various electronics and energy-related fields.
Collapse
Affiliation(s)
- Gang Bian
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Zhang L, Zhang Y, Sha L, Ji X, Chen H, Zhao X. Enhanced electrochemical performance of Si-carbon materials from Larch waste by filtration liquefaction residue process. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO 2 Capture and Supercapacitor. Molecules 2021; 26:molecules26030738. [PMID: 33572605 PMCID: PMC7866987 DOI: 10.3390/molecules26030738] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.
Collapse
|
12
|
Mohamed MG, El-Mahdy AFM, Ahmed MMM, Kuo SW. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake. Chempluschem 2020; 84:1767-1774. [PMID: 31943884 DOI: 10.1002/cplu.201900635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/06/2019] [Indexed: 11/10/2022]
Abstract
In this study a series of bicarbazole-based covalent triazine frameworks (Car-CTFs) were synthesized under ionothermal conditions from [9,9'-bicarbazole]-3,3',6,6'-tetracarbonitrile (Car-4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer-Emmett-Teller analyses revealed that these Car-CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2 /g). The electrochemical performances of this Car-CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2 . The other Car-CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Chemistry Department Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Chemistry Department Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mahmoud M M Ahmed
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
13
|
Lacerda GRDBS, dos Santos Junior GA, Rocco MLM, Lavall RL, Matencio T, Calado HDR. Development of a new hybrid CNT-TEPA@poly(3,4-ethylenedioxythiophene-co-3-(pyrrol-1-methyl)pyridine) for application as electrode active material in supercapacitors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Lacerda GRDBS, dos Santos Junior GA, Rocco MLM, Lavall RL, Matencio T, Calado HDR. Development of nanohybrids based on carbon nanotubes/P(EDOT-co-MPy) and P(EDOT-co-PyMP) copolymers as electrode materials for aqueous supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev 2020; 49:3565-3604. [DOI: 10.1039/d0cs00017e] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current advances, structure-property relationship and future perspectives in covalent organic frameworks (COFs) and their nanosheets for electrochemical energy storage (EES) and conversion (EEC) are summarized.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xuechun Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Qingqing Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Siwu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xing Gao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
16
|
Mu J, Li Q, Kong X, Wu X, Sunarso J, Zhao Y, Zhou J, Zhuo S. Characterization of Hierarchical Porous Carbons Made from Bean Curd via K
2
CO
3
Activation as a Supercapacitor Electrode. ChemElectroChem 2019. [DOI: 10.1002/celc.201900962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiahui Mu
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| | - Qiang Li
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| | - Xiangjin Kong
- School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252000 China
| | - Xiaozhong Wu
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and ScienceSwinburne University of Technology, Jalan Simpang Tiga 93350 Kuching, Sarawak Malaysia
| | - Yi Zhao
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| | - Jin Zhou
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| | - Shuping Zhuo
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 China
| |
Collapse
|
17
|
Deka N, Barman J, Deka J, Raidongia K, Dutta GK. Microporous Organic Polymer‐Derived Nitrogen‐Doped Porous Carbon Spheres for Efficient Capacitive Energy Storage. ChemElectroChem 2019. [DOI: 10.1002/celc.201900825] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Namrata Deka
- Department of ChemistryNational Institute of Technology Meghalaya, Bijni complex, Laitumkhrah Shillong – 793003, Meghalaya India
| | - Jayshree Barman
- Department of ChemistryNational Institute of Technology Meghalaya, Bijni complex, Laitumkhrah Shillong – 793003, Meghalaya India
| | - Jumi Deka
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati – 781039, Assam India
| | - Kalyan Raidongia
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati – 781039, Assam India
| | - Gitish K. Dutta
- Department of ChemistryNational Institute of Technology Meghalaya, Bijni complex, Laitumkhrah Shillong – 793003, Meghalaya India
| |
Collapse
|
18
|
New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts 2019. [DOI: 10.3390/catal9020133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The efficiency of porous carbons in fine chemical synthesis, among other application fields, has been demonstrated since both the porous structure and chemical surface provide the appropriated chemical environment favoring a great variety of relevant chemical transformations. In recent years, metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as interesting opportunities in the preparation of porous carbons with improved physico-chemical properties. Direct calcination of MOFs or COFs, in the presence or not of others carbon or heteroatom sources, could be considered an easy and practical approach for the synthesis of highly dispersed heteroatom-doped porous carbons but also new porous carbons in which single atoms of metallic species are present, showing a great development of the porosity; both characteristics of supreme importance for catalytic applications. The goal of this review is to provide an overview of the traditional methodologies for the synthesis of new porous carbon structures together with emerging ones that use MOFs or COFs as carbon precursors. As mentioned below, the catalytic application in fine chemical synthesis of these kinds of materials is at present barely explored, but probably will expand in the near future.
Collapse
|
19
|
Zhao Y, Bu N, Shao H, Zhang Q, Feng B, Xu Y, Zheng G, Yuan Y, Yan Z, Xia L. A carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance. NEW J CHEM 2019. [DOI: 10.1039/c9nj04038b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous aromatic framework serving as a precursor preserves the customized nitrogen atoms in the porous carbons, which endows improved electrochemical properties for high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Yunbo Zhao
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Naishun Bu
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Huimin Shao
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Qian Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Bin Feng
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Yanmei Xu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Guiyue Zheng
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- China
| | - Zhuojun Yan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Lixin Xia
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|