1
|
Ashraf I, Ahmad S, Dastan D, Wang C, Garmestani H, Iqbal M. Fabrication of ionic liquid based D-Ti3C2/MoO3 hybrid electrode system for efficient energy storage applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Mondal S, Sarkar S, Bagchi D, Das T, Das R, Singh AK, Prasanna PK, Vinod CP, Chakraborty S, Peter SC. Morphology-Tuned Pt 3 Ge Accelerates Water Dissociation to Industrial-Standard Hydrogen Production over a wide pH Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202294. [PMID: 35609013 DOI: 10.1002/adma.202202294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The discovery of novel materials for industrial-standard hydrogen production is the present need considering the global energy infrastructure. A novel electrocatalyst, Pt3 Ge, which is engineered with a desired crystallographic facet (202), accelerates hydrogen production by water electrolysis, and records industrially desired operational stability compared to the commercial catalyst platinum is introduced. Pt3 Ge-(202) exhibits low overpotential of 21.7 mV (24.6 mV for Pt/C) and 92 mV for 10 and 200 mA cm-2 current density, respectively in 0.5 m H2 SO4 . It also exhibits remarkable stability of 15 000 accelerated degradation tests cycles (5000 for Pt/C) and exceptional durability of 500 h (@10 mA cm-2 ) in acidic media. Pt3 Ge-(202) also displays low overpotential of 96 mV for 10 mA cm-2 current density in the alkaline medium, rationalizing its hydrogen production ability over a wide pH range required commercial operations. Long-term durability (>75 h in alkaline media) with the industrial level current density (>500 mA cm-2 ) has been demonstrated by utilizing the electrochemical flow reactor. The driving force behind this stupendous performance of Pt3 Ge-(202) has been envisaged by mapping the reaction mechanism, active sites, and charge-transfer kinetics via controlled electrochemical experiments, ex situ X-ray photoelectron spectroscopy, in situ infrared spectroscopy, and in situ X-ray absorption spectroscopy further corroborated by first principles calculations.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Tisita Das
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ponnappa Kechanda Prasanna
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 410008, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
3
|
Teymourian T, Alavi Moghaddam MR, Kowsari E. Performance of novel GO-Gly/HNTs and GO-GG/HNTs nanocomposites for removal of Pb(II) from water: optimization based on the RSM-CCD model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9124-9141. [PMID: 34494195 DOI: 10.1007/s11356-021-16297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
For the first time, in this study, two novel glycogen-graphene oxide/halloysite nanotubes (GO-Gly/HNTs) and guar gum-graphene oxide/halloysite nanotubes (GO-GG/HNTs) nanocomposites were synthesized as the adsorbents for removal of Pb(II) from water, and the ionic liquid was used in the synthesis as a green solvent. According to the SEM, TEM, EDS, BET, zeta potential, FTIR, and XRD results, GO-Gly/HNTs and GO-GG/HNTs were synthesized successfully. Response surface methodology (RSM) was applied to optimize the experimental conditions. Nanocomposites followed the Langmuir equilibrium model and were best fitted to the pseudo-second-order model. According to the thermodynamic model, the adsorption process was endothermic. Due to several features, these two novel nanocomposites can be considered the proper candidate for Pb(II) removal from water and wastewater. First, these nanocomposites have good adsorption capacity for Pb(II) removal, which is 219 mg/g for GO-Gly/HNTs and 315 mg/g for GO-GG/HNTs. Moreover, nanocomposites can be recycled with proper adsorption capacity after four repeated cycles. These materials can be used to remove Pb(II) from water in the presence of other contaminants because nanocomposites have selective tendency toward Pb(II) in the presence of other pollutants such as Cd2+, Cu2+, Cr2+, and Co2+. In addition, the presence of Ca2+, Mg2+, Na+, and K+ improve Pb(II) removal. Finally, possible mechanisms for each nanocomposite were represented.
Collapse
Affiliation(s)
- Targol Teymourian
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran.
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran
| |
Collapse
|
4
|
Guo F, Guo J, Zheng Z, Xia T, Chishti AN, Lin L, Zhang W, Diao G. Polymerization of pyrrole induced by pillar[5]arene functionalized graphene for supercapacitor electrode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
He H, Zheng M, Liu Q, Liu J, Zhao J, Zhuang Y, Liu X, Xu Q, Kirk SR, Yin D. Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon. NEW J CHEM 2022. [DOI: 10.1039/d2nj00040g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon catalyzed efficiently and stably the selective epoxidation of perillyl alcohol with H2O2.
Collapse
Affiliation(s)
- Huiting He
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Min Zheng
- College of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- College of Material Science & Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Jian Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Juan Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Yuting Zhuang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Xianxiang Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Qiong Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Steven R. Kirk
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Dulin Yin
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| |
Collapse
|
6
|
Wang L, Li X, Xiong S, Lin H, Xu Y, Jiao Y, Chen J. Plant polyphenols induced the synthesis of rich oxygen vacancies Co 3O 4/Co@N-doped carbon hollow nanomaterials for electrochemical energy storage and conversion. J Colloid Interface Sci 2021; 600:58-71. [PMID: 34004430 DOI: 10.1016/j.jcis.2021.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Reasonable hollow structure design and oxygen vacancy defects control play an important role in the optimization of electrochemical energy storage and electrocatalytic properties. Herein, a plant polyphenol tannic acid was used to etch Co-based zeolitic imidazolate framework (ZIF-67) followed by calcination to prepare a porous Co3O4@Co/NC hollow nanoparticles (Co3O4@Co/NC-HN) with rich oxygen vacancy defects. Owing to the metal-phenolic networks (MPNs), rich oxygen vacancy defects and the synergistic effect between Co3O4 and Co/NC, the box-like Co3O4@Co/NC-HN nanomaterials with large specific surface areas exhibit excellent supercapacitor performance and electrocatalytic activity. As expected, Co3O4@Co/NC-HN shows high specific capacity (273.9 mAh g-1 at 1 A g-1) and remarkable rate performance. Moreover, the assembled Hybrid supercapacitor (HSC, Co3O4@Co/NC-HN//Active carbon) device obtained a maximum energy density of 57.8 Wh kg-1 (800 W kg-1) and exhibited superior cycle stability of 92.6% after 4000 cycles. Notably, as an electrocatalyst, the nanocomposites exhibit small overpotential and Tafel slope. These results strongly demonstrate that both unique hollow structure and abundant oxygen vacancies designed from plant polyphenols provide superiorities for the synthesis of efficient and green multifunctional electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Lingdan Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Boorboor Ajdari F, Dashti Najafi M, Izadpanah Ostad M, Naderi HR, Niknam Shahrak M, Kowsari E, Ramakrishna S. A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Aldroubi S, Brun N, Bou Malham I, Mehdi A. When graphene meets ionic liquids: a good match for the design of functional materials. NANOSCALE 2021; 13:2750-2779. [PMID: 33533392 DOI: 10.1039/d0nr06871c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Graphene is an attractive material that is characterized by its exceptional properties (i.e. electrical, mechanical, thermal, optical, etc.), which have pushed researchers to attach high interest to its production and functionalization processes to meet applications in different fields (electronics, electromagnetics, composites, sensors, energy storage, etc.). The synthesis (bottom-up) of graphene remains long and laborious, at the same time expensive, and it is limited to the development of this material in low yield. Hence, the use of graphite as a starting material (top-down through exfoliation or oxidation) seems a promising and easy technique for producing a large quantity of graphene or graphene oxide (GO). On the one hand, GO has been extensively studied due to its ease of synthesis, processing and chemical post-functionalization. One the other hand, "pristine" graphene sheets, obtained through exfoliation, are limited in processability but present enhanced electronic properties. Both types of materials have been of great interest to design functional nanomaterials. Ionic liquids (ILs) are task-specific solvents that exhibit tunable physico-chemical properties. ILs have many advantages as compared with conventional solvents, such as high thermal and chemical stability, low volatility, excellent conductivity and inherent polarity. In the last decade, ILs have been widely employed for the preparation and stabilization of various nanomaterials. In particular, the combination of ILs and graphene, including GO and pristine graphene sheets, has been of growing interest for the preparation, processing and functionalization of hybrid nanomaterials. Understanding the structure and properties of the graphene/IL interface has been of considerable interest for a large panel of applications ranging from tribology to energy storage.
Collapse
Affiliation(s)
- Soha Aldroubi
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | | | | |
Collapse
|
9
|
Efficient Photocatalytic Degradation of Gaseous Benzene and Toluene over Novel Hybrid PIL@TiO2/m-GO Composites. Catalysts 2021. [DOI: 10.3390/catal11010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this work, the PIL (poly ionic liquid)@TiO2 composite was designed with two polymerized ionic liquid concentrations (low and high) and evaluated for pollutant degradation activity for benzene and toluene. The results showed that PIL (low)@TiO2 composite was more active than PIL (high)@TiO2 composites. The photodegradation rate of benzene and toluene pollutants by PIL (low)@TiO2 and PIL (high)@TiO2 composites was obtained as 86% and 74%, and 59% and 46%, respectively, under optimized conditions. The bandgap of TiO2 was markedly lowered (3.2 eV to 2.2 eV) due to the formation of PIL (low)@TiO2 composite. Besides, graphene oxide (GO) was used to grow the nano-photocatalysts’ specific surface area. The as-synthesized PIL (low)@TiO2@GO composite showed higher efficiency for benzene and toluene degradation which corresponds to 91% and 83%, respectively. The resultant novel hybrid photocatalyst (PIL@TiO2/m-GO) was prepared and appropriately characterized for their microstructural, morphology, and catalytic properties. Among the studied photocatalysts, the PIL (low)@TiO2@m-GO composite exhibits the highest activity in the degradation of benzene (97%) and toluene (97%). The ultimate bandgap of the composite reached 2.1 eV. Our results showed that the as-prepared composites hold an essential role for future considerations over organic pollutants.
Collapse
|
10
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Pseudocapacitive efficiency of covalently Cr-complex with L-histidine-methyl ester as a ligand graphene oxide blended with conducting polymer (POAP) as electrode material in supercapacitor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Influence of synthesized functionalized reduced graphene oxide aerogel with 4,4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Electrochemical performance of Silsesquioxane-GO loaded with alkoxy substituted ammonium-based ionic liquid and POAP for supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
White DL, Lystrom L, He X, Burkert SC, Kilin DS, Kilina S, Star A. Synthesis of Holey Graphene Nanoparticle Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36513-36522. [PMID: 32672929 DOI: 10.1021/acsami.0c09394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bulk-scale syntheses of sp2 nanocarbon have typically been generated by extensive chemical oxidation to yield graphite oxide from graphite, followed by a reductive step. Materials generated via harsh random processes lose desirable physical characteristics. Loss of sp2 conjugation inhibits long-range electronic transport and the potential for electronic band manipulation. Here, we present a nanopatterned holey graphene material electronically hybridized with metal-containing nanoparticles. Oxidative plasma etching of highly ordered pyrolytic graphite via previously developed covalent organic framework (COF)-5-templated patterning yields bulk-scale materials for electrocatalytic applications and fundamental investigations into band structure engineering of nanocomposites. We establish a broad ability (Ag, Au, Cu, and Ni) to grow metal-containing nanoparticles in patterned holes in a metal precursor-dependent manner without a reducing agent. Graphene nanoparticle compounds (GNCs) show metal-contingent changes in the valence band structure. Density functional theory investigations reveal preferences for uncharged metal states, metal contributions to the valence band, and embedding of nanoparticles over surface incorporation. Ni-GNCs show activity for oxygen evolution reaction in alkaline media (1 M KOH). Electrocatalytic activity exceeds 10,000 mA/mg of Ni, shows stability for 2 h of continuous operation, and is kinetically consistent via a Tafel slope with Ni(OH)2-based catalysis.
Collapse
Affiliation(s)
- David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Levi Lystrom
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Parsimehr H, Ehsani A. Corn‐based Electrochemical Energy Storage Devices. CHEM REC 2020; 20:1163-1180. [DOI: 10.1002/tcr.202000058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry Faculty of Science University of Qom Qom Iran
- Color and Surface Coatings Group Polymer Processing Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Ali Ehsani
- Department of Chemistry Faculty of Science University of Qom Qom Iran
| |
Collapse
|
16
|
Wang WD, Zhang PP, Gao SQ, Wang BQ, Wang XC, Li M, Liu F, Cheng JP. Core-shell nanowires of NiCo 2O 4@α-Co(OH) 2 on Ni foam with enhanced performances for supercapacitors. J Colloid Interface Sci 2020; 579:71-81. [PMID: 32574730 DOI: 10.1016/j.jcis.2020.06.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023]
Abstract
The composites of NiCo2O4 with unique structures are extensively explored as promising electrodes. In this work, core-shell structured nanowires anchored on nickel foam are synthesized by the hydrothermal synthesis of NiCo2O4 as core and subsequent electrodeposition of α-Co(OH)2 as shell. The core-shell composites exhibit enhanced electrochemical performances ascribing to the synergistic reactions from both materials, showing higher specific capacitance than any single component. By changing the deposition time, the mass loading of α-Co(OH)2 can be easily controlled. The electrochemical performances of the hybrid electrodes are diverse with the mass loading of Co(OH)2. The optimized hybrid electrode with 3 mins electrodeposition exhibits the highest specific capacitance (1298 F g-1 at 1 A g-1) among all electrodes. The redox reaction is a main contributor to the total specific capacitance through electrochemical kinetics analysis. An asymmetric supercapacitor assembled by the optimized material as positive electrode and activated carbon as negative electrode can achieve a relatively high energy density of 39.7 Wh kg-1 at a power density of 387.5 W kg-1 (at 0.5 A g-1) in a voltage of 1.55 V.
Collapse
Affiliation(s)
- W D Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - P P Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - S Q Gao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - B Q Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - X C Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - M Li
- Research Institute of Narada Power Source Co., Ltd, Hangzhou 311305, China
| | - F Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - J P Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
17
|
Hoseinian FS, Rezai B, Kowsari E, Chinnappan A, Ramakrishna S. Synthesis and characterization of a novel nanocollector for the removal of nickel ions from synthetic wastewater using ion flotation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Çelik HH, Özcan S, Mülazımoğlu AD, Yılmaz E, Mercimek B, Çukurovalı A, Yılmaz İ, Solak AO, Mülazımoğlu İE. The synthesis of a novel DDPHC diazonium salt: Investigation of its usability in the determination of phenol and chlorophenols using CV, SWV and DPV techniques. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhai S, Fan Z, Jin K, Zhou M, Zhao H, Zhao Y, Ge F, Li X, Cai Z. Synthesis of zinc sulfide/copper sulfide/porous carbonized cotton nanocomposites for flexible supercapacitor and recyclable photocatalysis with high performance. J Colloid Interface Sci 2020; 575:306-316. [PMID: 32387739 DOI: 10.1016/j.jcis.2020.04.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
The composite material composed of zinc sulfide, copper sulfide and porous carbon is prepared in this study, exhibiting excellent performances in the field of supercapacitor electrode and photocatalysts. In the degradation process of organic pollutants, zinc sulfide/copper sulfide with heterostructure effectively reduce the recombination rate of photo-generated electron-hole pairs. And the porous carbon substrate can not only accelerate the separation of photo-carriers but also provide numerous active sites. Furthermore, the sample can be easily separated after decomposing the organic pollutants. As a supercapacitor electrode, the combination of zinc sulfide/copper sulfide with large pseudo-capacitance and porous carbon material with excellent double-layercapacitance results in superior electrochemical performances. The composite electrode shows a high specific capacitance of 1925 mF cm-2/0.53 mAh cm-2 at 4 mA cm-2. And the symmetric flexible supercapacitor based on the composite electrode achieves an outstanding energy density (0.39 Wh cm-2 at the power density of 4.32 W cm-2). Therefore, the zinc sulfide/copper sulfide/porous carbonized cotton nanocomposites (pCZCS) prepared herein exhibit dual functions of photocatalysts with high efficiency as well as energy storage materials with high energy density, which is interesting and important for expanding the practical applications in cross fields.
Collapse
Affiliation(s)
- Shixiong Zhai
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Zhuizhui Fan
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Kaili Jin
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Man Zhou
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Hong Zhao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Yaping Zhao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fengyan Ge
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiaoyan Li
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China.
| | - Zaisheng Cai
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
20
|
Ehsani A, Parsimehr H. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview. CHEM REC 2020; 20:820-830. [DOI: 10.1002/tcr.202000003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Ali Ehsani
- Department of ChemistryFaculty of ScienceUniversity of Qom Qom Iran
| | - Hamidreza Parsimehr
- Department of ChemistryFaculty of ScienceUniversity of Qom Qom Iran
- Color and Surface Coatings GroupPolymer Processing DepartmentIran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| |
Collapse
|
21
|
Zhong Y, Cao X, Ying L, Cui L, Barrow C, Yang W, Liu J. Homogeneous nickel metal-organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance. J Colloid Interface Sci 2020; 561:265-274. [DOI: 10.1016/j.jcis.2019.10.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
|
22
|
Eshlaghi MA, Kowsari E, Ehsani A, Akbari-Adergani B, Hekmati M. Functionalized graphene oxide GO-[imi-(CH2)2-NH2] as a high efficient material for electrochemical sensing of lead: Synthesis surface and electrochemical characterization. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Sukumar S, Rudrasenan A, Padmanabhan Nambiar D. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia bonducella Seed Extract and Their Applications. ACS OMEGA 2020; 5:1040-1051. [PMID: 31984260 PMCID: PMC6977032 DOI: 10.1021/acsomega.9b02857] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 05/09/2023]
Abstract
Copper oxide nanoparticles (CuO Nps) were synthesized using Caesalpinia bonducella seed extract via a green synthetic pathway and were evaluated for electrocatalytic properties by carrying out electrochemical detection of riboflavin [vitamin B2 (VB2)]. The seeds of C. bonducella are known to have strong antioxidant properties arising due to the presence of various components, including citrulline, phytosterinin, β-carotene, and flavonoids, which serve as reducing, stabilizing, and capping agents. The synthesized CuO Nps were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetrc analysis-differential thermal analysis, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy and further used as a modifier for a graphite electrode surface. The modified electrode was electrochemically characterized by cyclic voltammetry, square-wave voltammetry, and chronoamperometry techniques and then assessed for electrocatalysis by carrying out the detection of VB2. The electrochemical sensor could be used for nanomolar detection of VB2 with an observed linear range of 3.13-56.3 nM with a limit of detection of 1.04 nM. The electrode showed good stability and reproducibility over a period of 120 days. The CuO Nps were further analyzed for antibacterial effect with Gram-positive and Gram-negative bacteria, and in both cases, high antibacterial activity was clearly observed. The newly synthesized nanoparticles, thus, proved to be an interesting material for electrochemical and biological studies.
Collapse
Affiliation(s)
- Saranya Sukumar
- Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Agneeswaran Rudrasenan
- Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Deepa Padmanabhan Nambiar
- Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| |
Collapse
|
24
|
Zhao W, Yan G, Zheng Y, Liu B, Jia D, Liu T, Cui L, Zheng R, Wei D, Liu J. Bimetal-organic framework derived Cu(NiCo) 2S 4/Ni 3S 4 electrode material with hierarchical hollow heterostructure for high performance energy storage. J Colloid Interface Sci 2020; 565:295-304. [PMID: 31978792 DOI: 10.1016/j.jcis.2020.01.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Rational design of electrical active materials with high performance for energy storage and conversion is of great significance. Herein, Cu(NiCo)2S4/Ni3S4, a three-dimensional (3D) hierarchical hollow heterostructured electrode material, is designed by etching the well-defined bimetal organic framework (MOF) via sequential in-situ ion-exchange processes. This trimetallic sulfides with unique structure provide large surface area, hierarchical pore distribution and enhanced electrical conductivity, can enrich the active sites for redox reactions, facilitate electrolyte penetration and rapid charge transfer kinetics. As a result, the Cu(NiCo)2S4/Ni3S4 electrode exhibits a high specific capacitance of 1320 F/g at 1 A/g and excellent rate performance (only 15% of capacitance is attenuated when the current density is increased by 20 times). Furthermore, a fabricated hybrid supercapacitor of Cu(NiCo)2S4/Ni3S4/AC can deliver a maximum energy density of 40.8 Wh/kg, remarkable power density of 7859.2 W/kg and superior cycling stability (85% retention of capacitance after 5000 cycles), demonstrating great potential for practical applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Wei Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Guowen Yan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Yiwei Zheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Bingping Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266071, Shandong, China
| | - Dedong Jia
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Taiwei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China.
| | - Rongkun Zheng
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China
| | - Di Wei
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China; College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China.
| |
Collapse
|
25
|
Dong C, Yu Y, Zhang X, Huang L, Wu Y, Li J, Liu Z. An ionic liquid-modified reduced graphene oxide electrode material with favourable electrochemical properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00914h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supercapacitor assembled by a RGO–IL material showed an outstanding energy density (50.19 W h kg−1) and could light an LED for 30 s.
Collapse
Affiliation(s)
- Chang Dong
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yijia Yu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xiaoling Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Liyan Huang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Ying Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Jun Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Zhengping Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
26
|
Raj CJ, Manikandan R, Yu KH, Nagaraju G, Park MS, Kim DW, Park SY, Kim BC. Engineering thermally activated NiMoO4 nanoflowers and biowaste derived activated carbon-based electrodes for high-performance supercapatteries. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01085h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiMoO4 nanoflowers having pure crystalline phases with slight amorphous surface exhibited excellent battery-like electrochemical performance and potential for supercapattery positive electrodes.
Collapse
Affiliation(s)
- C. Justin Raj
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
| | - Ramu Manikandan
- Department of Printed Electronics Engineering
- Sunchon National University
- Jellanamdo 57922
- Republic of Korea
| | - Kook Hyun Yu
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
| | - Goli Nagaraju
- Department of Chemical Engineering
- College of Engineering
- Kyung Hee University
- Gyeonggi-do 44670
- Republic of Korea
| | - Myung-Soo Park
- Department of Chemical Engineering
- Hanyang University
- Seoul-04763
- Republic of Korea
| | - Dong-Won Kim
- Department of Chemical Engineering
- Hanyang University
- Seoul-04763
- Republic of Korea
| | - Sang Yeup Park
- Department of Ceramic Engineering
- Gangneung-Wonju National University
- Gangneung-25457
- Republic of Korea
| | - Byung Chul Kim
- Department of Printed Electronics Engineering
- Sunchon National University
- Jellanamdo 57922
- Republic of Korea
| |
Collapse
|
27
|
Surface-functionalized Fe2O3 nanowire arrays with enhanced pseudocapacitive performance as novel anode materials for high-energy-density fiber-shaped asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Pozveh AA, Kowsari E, Hashemi MM, Mirjafari Z. Preparation and electromagnetic wave absorption properties of polymer nanocomposites based on new functionalized graphene oxide iron pentacarbonyl and ionic liquid. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04037-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Synthesis of reduced graphene oxide functionalized with methyl red dye and its role in enhancing photoactivity in TiO2–IL/WO3 composite for toluene degradation. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Synthesis and electrochemical capacitor characterization of new copolyimides containing thiazole ring and their composites with conductive polymer. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03995-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Liang H, Jia H, Lin T, Wang Z, Li C, Chen S, Qi J, Cao J, Fei W, Feng J. Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. J Colloid Interface Sci 2019; 554:59-65. [DOI: 10.1016/j.jcis.2019.06.095] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
|
32
|
Shahrivari S, Kowsari E, Shockravi A, Ehsani A. Synthesis of different new copolyimides and influence of different molar ratios of diamines and dianhydride on pseudocapacitance performance of p-type conductive polymer. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|