1
|
Baldelli M, Di Muccio G, Viola F, Giacomello A, Cecconi F, Balme S, Chinappi M. Performance of Single Nanopore and Multi-Pore Membranes for Blue Energy. Chemphyschem 2024:e202400395. [PMID: 39161129 DOI: 10.1002/cphc.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The salinity gradient power extracted from the mixing of electrolyte solutions at different concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology profitable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ~60 pW per pore for positively charged membranes (surface charge σw=160 mC/m2) and ~30 pW for negatively charges ones, σw=-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | | | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | - Fabio Cecconi
- Istituto Sistemi Complessi, CNR, Via dei Taurini 19, Roma, Italy
- INFN, Sezione Roma 1, Piazzale Aldo Moro, 2, Roma, Italy
| | - Sébastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ. Montpellier, France
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
2
|
Zhao R, Zhou J, Bu T, Li H, Jiao Y. Reverse Electrodialysis with Continuous Random Variation in Nanochannel Shape: Salinity Gradient-Driven Power Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1302. [PMID: 39120407 PMCID: PMC11314336 DOI: 10.3390/nano14151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The shape of nanochannels plays a crucial role in the ion selectivity and overall performance of reverse electrodialysis (RED) systems. However, current research on two-dimensional nanochannel shapes is largely limited to a few fixed asymmetric forms. This study explores the impact of randomly shaped nanochannels using dimensionless methods, controlling their randomness by varying their length and shape amplitude. The research systematically compares how alterations in the nanochannel length and shape amplitude influence various system performance parameters. Our findings indicate that increasing the nanochannel length can significantly enhance the system performance. While drastic changes in the nanochannel shape amplitude positively affect the system performance, the most significant improvements arise from the interplay between the nanochannel length and shape amplitude. This compounding effect creates a local optimum, resulting in peak system performance. Within the range of dimensionless lengths from 0 to 30, the system reaches its optimal performance at a dimensionless length of approximately 25. Additionally, we explored two other influencing factors: the nanochannel surface charge density and the concentration gradient of the solution across the nanochannel. Optimal performance is observed when the nanochannel has a high surface charge density and a low concentration gradient, particularly with random shapes. This study advances the theoretical understanding of RED systems in two-dimensional nanochannels, guiding research towards practical operational conditions.
Collapse
Affiliation(s)
- Runchen Zhao
- School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinhui Zhou
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Tianqi Bu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Li
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yanmei Jiao
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Zhang X, Hu N, Wang Y, Zhao Y, Wang D. Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores. Anal Chem 2024; 96:11009-11017. [PMID: 38934578 DOI: 10.1021/acs.analchem.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Zero-depth interfacial nanopores, which are formed by two crossed nanoscale channels at their intersection interface, have been proposed to increase the spatial resolution of solid-state nanopores. However, research on zero-depth interfacial nanopores is still in its early stages. Although it has been shown that the current passing through an interfacial nanopore is largely independent of the membrane thickness, existing studies have not fully considered the impact of membrane thickness on other ion transport characteristics within these nanopores. In this paper, we investigate the electrokinetic ion transport phenomenon in the zero-depth interfacial nanopores, especially focusing on the influence of membrane thickness on the ion transport phenomenon. Our model incorporates the Poisson-Nernst-Planck equations and the Navier-Stokes equations, featuring a pH-regulated surface charge density. We find that when the thickness of the nanochannels is close to the interface size of the formed interfacial nanopore, the phenomenon of ion transport in the interfacial nanopore is similar to that in a conventional cylindrical nanopore. However, when the thickness of the nanochannels is much greater than the interface size of the formed interfacial nanopore, several distinct phenomena occur. The surface charge density on the inner walls of the interfacial nanopores has a small peak at the interface of the two crossing nanochannels, and the anion concentration changes greatly between the two nanochannels; that is, a much greater anion concentration forms in the nanochannel near the anode side than in the nanochannel near the cathode side. When the surface charge is nonzero, the electric field within the interfacial nanopore creates three extreme points, and the directions of the local electric fields are opposite at the ends of the membrane.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Yun Zhao
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
4
|
Nekoubin N, Sadeghi A, Chakraborty S. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10171-10183. [PMID: 38698764 DOI: 10.1021/acs.langmuir.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The inherent limits of the current produced by imposing salinity gradients along a nanofluidic channel having "hard" boundary walls heavily constrain the resulting energy harvesting efficacy, acting as major hindrances against the practicability of harnessing high power density from the mixing of water having different salinities. In this work, the infusion of variable-thickness polyelectrolyte layer of a conical shape is projected to augment salinity gradient power generation in nanochannels. Such a progressive thickening of a charged interfacial layer on account of axially declining ion concentration facilitates the shedding of enhanced numbers of mobile ions, bearing a net charge of equal and opposite to the surface-bound ions, into the mainstream current flow. We show that the proposed design can convert energy at a higher efficiency as compared to both solid-state and available polyelectrolyte layer (PEL)-covered nanochannels. The same is true for the maximum power density at moderate and high concentration ratios including natural salt gradient conditions for which more than 50% increase is achievable. The maximum values achieved for efficiency and power density read 50.3% and 6.6 kW/m2, respectively. Our results provide fundamental insights on strategizing variable-thickness polyelectrolyte layer grafting on the nanochannel interfaces, toward realizing high-performance osmotic power generators by altering the local ionic clouds alongside the grafted layers and enhancing the ionic mobility by inducing a driving potential gradient concomitantly. These findings open up a new strategy of efficient conversion of the power of the salinity difference of seawater and river water into electricity in a nanofluidic framework, surpassing the previously established limits of blue energy harvesting technologies.
Collapse
Affiliation(s)
- Nader Nekoubin
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Arman Sadeghi
- Department of Mechanical Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Khatibi M, Ashrafizadeh SN. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Anal Chem 2023. [PMID: 38019778 DOI: 10.1021/acs.analchem.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under ηε = ηD = 0.8, ημ = 2, C0 = 20 mM, and NPEL/NA = 80 mol m-3 conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as Rf,square > Rf,DC > Rf,triangular > Rf,sinusoidal > Rf,sawtooth and Ssawtooth > Ssinusoidal > Striangular > SDC > Ssquare for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
6
|
Liu CW, Hsu JP. Enhancing the performance of a cylindrical nanopore in osmotic power generation through designing the waveform of its inner surface. Phys Chem Chem Phys 2023; 25:28363-28372. [PMID: 37842817 DOI: 10.1039/d3cp03637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Recently, nanofluidic osmotic power, a promising technology converting the salinity difference between brine and fresh water into electricity using nanopores, has drawn the attention of researchers. Previous studies in this field were based mainly on nanopores having a smooth inner surface. To enhance the performance of nanofluidic osmotic power, we investigated four types of cylindrical nanopores, each with a unique waveform wall design (square, saw-tooth, triangle, and sine waves). This study focused on elucidating the influence of bulk salt concentration and geometric characteristics at the solid-liquid interface. We demonstrated that the presence of a waveform wall introduces new variables that have a significant impact on the overall performance of a nanofluidic osmotic power system. At the optimal amplitude of the waveform wall, raising waveform frequency can remarkably improve the osmotic current, diffusion potential, maximum power, and maximum efficiency. The present study provides a novel aspect of osmotic power, where the geometric nature of the nanopore reveals profound and intriguing phenomena primarily attributed to the distribution of ions within its interior.
Collapse
Affiliation(s)
- Chung-Wei Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
8
|
Khatibi M, Dartoomi H, Ashrafizadeh SN. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13717-13734. [PMID: 37702658 DOI: 10.1021/acs.langmuir.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Access to and use of energy resources are now crucial components of modern human existence thanks to the exponential growth of technology. Traditional energy sources provide significant challenges, such as pollution, scarcity, and excessive prices. As a result, there is more need than ever before to replace depleting resources with brand-new, reliable, and environmentally friendly ones. With the aid of reverse electrodialysis, the salinity gradient between rivers and seawater as a clean supply with easy and infinite availability is a viable choice for energy generation. The development of nanofluidic-based reverse electrodialysis (NRED) as a novel high-efficiency technology is attributable to the progress of nanoscience. However, understanding the predominant mechanisms of this process at the nanoscale is necessary to develop and disseminate this technology. One viable option to gain insight into these systems while saving expenses is to employ simulation tools. In this study, we looked at how a layer-by-layer (LBL) soft layer influences ion transport and energy production in charged nanochannels. We solved the steady-state Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations for three different types of nanochannels with a trumpet geometry, where the narrow part is covered with a built-up LbL soft layer and the rest is a hard wall with a surface charge density of σ = -10, 0, or +10 mC/m2. The findings show that in type (I) nanochannels, at NPEL/NA = 100 mol/m3 and pH = 7, the maximum power output rises 675-fold as the concentration ratio rises from 10 to 1000. The results of this study can aid in a better understanding of energy harvesting processes using nanofluidic-based reverse electrodialysis in order to identify optimal conditions for the design of an intelligent route with great controllability and minimal pollution.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
9
|
Peng R, Li T, Song H, Wang S, Song Y, Wang J, Xu M. In-depth understanding of boosting salinity gradient power generation by ionic diode. iScience 2023; 26:107184. [PMID: 37534140 PMCID: PMC10391965 DOI: 10.1016/j.isci.2023.107184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Ionic diodes constructed with asymmetric channel geometry and/or charge layout have shown outstanding performance in ion transport manipulation and reverse electrodialysis (RED) energy collection, but the working mechanism is still indistinct. Herein, we systematically investigated RED energy conversion of straight nanochannel-based bipolar ionic diode by coupling the Poisson-Nernst-Planck and Navier-Strokes equations. The effects of nanochannel structure, charging polarity, and symmetricity as well as properties of working fluids on the output voltage and output power were investigated. The results show that as high-concentration feeding solution is applied, the bipolar ionic diode-based RED system gives higher output voltage and output power compared to the unipolar channel RED system. Under optimal conditions, the voltage output of the bipolar channel is increased by ∼100% and the power output is increased by ∼260%. This work opens a new route for the design and optimization of high-performance salinity energy harvester as well as for water desalination.
Collapse
Affiliation(s)
- Ran Peng
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Tong Li
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Dalian Maritime University, Dalian 116026, China
| | - Hanqiong Song
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Shiyao Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Minyi Xu
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
10
|
Kim J, Wang C, Park J. Multi-Layered Bipolar Ionic Diode Working in Broad Range Ion Concentration. MICROMACHINES 2023; 14:1311. [PMID: 37512622 PMCID: PMC10384376 DOI: 10.3390/mi14071311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Ion current rectification (ICR) is the ratio of ion current by forward bias to backward bias and is a critical indicator of diode performance. In previous studies, there have been many attempts to improve the performance of this ICR, but there is the intrinsic problem for geometric changes that induce ionic rectification due to fabrication problems. Additionally, the high ICR could be achieved in the narrow salt concentration range only. Here, we propose a multi-layered bipolar ionic diode based on an asymmetric nanochannel network membrane (NCNM), which is realized by soft lithography and self-assembly of homogenous-sized nanoparticles. Owing to the freely changeable geometry based on soft lithography, the ICR performance can be explored according to the variation of microchannel shape. The presented diode with multi-layered configuration shows strong ICR performance, and in a broad range of salt concentrations (0.1 mM~100 mM), steady ICR performance. It is interesting to note that when each anion-selective (AS) and cation-selective (CS) NCNM volume was similar to each optimized volume in a single-layered device, the maximum ICR was obtained. Multi-physics simulation, which reveals greater ionic concentration at the bipolar diode junction under forward bias and less depletion under backward in comparison to the single-layer scenario, supports this tendency as well. Additionally, under different frequencies and salt concentrations, a large-area hysteresis loop emerges, which indicates fascinating potential for electroosmotic pumps, memristors, biosensors, etc.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Cong Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), 388, Lumo Road, Wuhan 430074, China
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
11
|
Zheng DC, Hsu JP. Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature. Phys Chem Chem Phys 2023; 25:6089-6101. [PMID: 36752071 DOI: 10.1039/d2cp05831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salinity gradient power, which converts Gibbs free energy of mixing to electric energy through an ion-selective pore, has great potential. Towards practical use, developing membrane-scaled nanoporous materials is desirable and necessary. Unfortunately, the presence of a significant ion concentration polarization (ICP) lowers appreciably the power harvested, especially at a high pore density. To alleviate this problem, we suggest applying an extra pressure difference ΔP across a membrane containing multiple nanopores, taking account of the associated power consumption. The results gathered reveal that the application of a negative pressure difference can improve the power harvested due to the enhanced selectivity. In addition, if the pore density of a membrane is high, raising its pore length is necessary to make the energy harvested economic. For example, if the pore length is 2000 nm and the pore density is 2.5 × 109 pores per cm2, an increment in the power density of 213 mW m-2 can be obtained by applying ΔP = -1 bar at pH 11 and 323 K, where a net positive power density can be retrieved. The performance of the system considered under various conditions is examined in detail, along with associated mechanisms.
Collapse
Affiliation(s)
- Ding-Cheng Zheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
12
|
Khosravikia M. Quantitative model for predicting the electroosmotic flow in dual-pole nanochannels. Electrophoresis 2023; 44:733-743. [PMID: 36808619 DOI: 10.1002/elps.202300006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Developing and assessing nanofluidic systems is time-consuming and costly owing to the method's novelty; hence, modeling is essential to determine the optimal areas for implementation and to grasp its workings. In this work, we examined the influence of dual-pole surface and nanopore configuration on ion transfer simultaneously. To achieve this, the two trumpet and cigarette configuration were coated with a dual-pole soft surface so that the negative charge could be positioned in the nanopore's small aperture. Subsequently, the Poisson-Nernst-Planck and Navier-Stokes equations were simultaneously solved under steady-state circumstances using varied values physicochemical properties for the soft surface and electrolyte. The pore's selectivity was S Trumpet > S Cigarette ${S}_{{\rm{Trumpet}}} > {S}_{{\rm{Cigarette}}}$ , and the rectification factor, on the other hand, was R f Cigarette < R f Trumpet ${R}_{{f}_{{\rm{Cigarette}}}} < {R}_{{f}_{{\rm{Trumpet}}}}$ , when the overall concentration was very low. When the ion partitioning effect is taken into account, we clearly show that the rectifying variables for the cigarette configuration and the trumpet configuration can reach values of 45 and 49.2, when the charge density and mass concentration were 100 mol/m3 and 1 mM, respectively. By using dual-pole surfaces, the controllability of nanopores' rectifying behavior may be modified to produce superior separation performance.
Collapse
Affiliation(s)
- Mohammad Khosravikia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Pandey D, Mondal PK, Wongwises S. Chemiosomotic flow in a soft conical nanopore: harvesting enhanced blue energy. SOFT MATTER 2023; 19:1152-1163. [PMID: 36633007 DOI: 10.1039/d2sm01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The salinity gradient energy or the 'blue energy' is one of the most promising inexpensive and abundant sources of clean energy, having immense capabilities to serve modern-day society. In this article, we overlay an extensive analysis of reverse electrodialysis (RED) for harvesting salinity gradient energy in a single conical nanochannel, grafted with a pH-tunable polyelectrolyte layer (PEL) on the inner surfaces. We primarily focus on the distinctiveness of the solution pH of the connecting reservoirs. In spite of acquiring a maximum power density of ∼1.2 kW m-2 in the chosen configuration, we notice a counter-intuitive patterning of the ion transport for a certain span of pH, leading to diminishing power. To this end, we discuss the possible strategic avenues essentially to achieve a higher amount of power density. In order to achieve a desirable outcome within that pH zone, we employ two separate approaches intending to counter the underlying physics. Results reveal a great enhancement in the power density as well as in the efficiency even under the framework of both strategies proposed herein. Moreover, as shown, the window of solution pH has increased by three times, implicating the maximum power density mentioned above. We expect that the strategic procedure of augmented energy harvesting as discussed in this analysis can be of importance from the perspective of fabricating state-of-the-art nanodevices aimed at blue energy harvesting.
Collapse
Affiliation(s)
- Doyel Pandey
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Pranab Kumar Mondal
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Somchai Wongwises
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| |
Collapse
|
14
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
15
|
Ion Rejection of pH-regulated Bipolar Nanopore of Various Shapes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Importance of nanochannels shape on blue energy generation in soft nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Lo HY, Tsou TY, Hsu JP. Ion transport in a non-isothermal electrokinetic energy conversion system. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Karimzadeh M, Khatibi M, Ashrafizadeh SN, Mondal PK. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Phys Chem Chem Phys 2022; 24:20303-20317. [PMID: 35979759 DOI: 10.1039/d2cp01015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously. Based on the temperature-dependent properties resulting from both temperature and concentration gradients, a numerical study was carried out to determine the maximum efficiency of salinity energy generation in funnel-shaped soft nanochannels. It was presumed that a dense layer of negative charge, called a polyelectrolyte layer (PEL), is coated on the walls of the nanochannels. Co-current and counter-current modes were used to obtain temperature and concentration gradients. Under steady-state conditions, the Poisson-Nernst-Planck, Stokes-Brinkman, and energy equations were numerically solved using equivalent approaches. The results revealed that by increasing the temperature and concentration ratios in both co-current and counter-current modes of operation, the salinity energy generation increased appreciably. The salinity energy generation increased from 30 to 80 pW upon increasing the temperature ratio from 1 to 8 at a constant concentration ratio of 1000 in counter-current mode. As verified from this analysis, low-grade heat sources (<100 °C) provide considerable energy conversion in PEL grafted nanofluidic confinement when placed between electrolyte solutions of different temperatures.
Collapse
Affiliation(s)
- Mohammad Karimzadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10313-10330. [PMID: 35952366 DOI: 10.1021/acs.langmuir.2c01790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Researchers are looking for new, clean, and accessible sources of energy due to rising global warming caused by the usage of fossil fuels and the irreversible harm that this does to the environment. Water salinity is one of the newest and most accessible renewable energy sources, which has sparked a lot of interest. Reverse electrodialysis (RED) has been utilized in the past to turn saline water into electricity. NRED, a reverse electrodialysis method utilizing nanofluidics, has gained popularity as nanoscale research advances. Developing and evaluating NRED systems is time-consuming and expensive due to the method's novelty; thus, modeling is required to identify the best locations for implementation and to comprehend its workings. In this work, we examined the influence of bipolar soft layer and nanochannel geometry on ion transfer and power production simultaneously. To achieve this, the two trumpet and cigarette geometries were coated with a bipolar soft layer so that both negative (type (I)) and positive (type (II)) charges could be positioned in the nanochannel's small aperture. After that, at steady state conditions, the Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations were solved concurrently. The findings revealed that altering the nanochannel coating from type (I) to type (II) alters the channel's selectivity from cations to anions. An approximately 22-fold improvement in energy conversion efficiency was achieved by raising the concentration ratio from 10 to 100 for the type (I) trumpet nanochannel. Type (I) cigarette geometry is advised for maximum power output at low and medium concentration ratios, whereas type (I) trumpet geometry is recommended for the maximum power production at high concentration ratios.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
21
|
Tanimoto IMF, Cressiot B, Greive SJ, Le Pioufle B, Bacri L, Pelta J. Focus on using nanopore technology for societal health, environmental, and energy challenges. NANO RESEARCH 2022; 15:9906-9920. [PMID: 35610982 PMCID: PMC9120803 DOI: 10.1007/s12274-022-4379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | | | - Bruno Le Pioufle
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Laurent Bacri
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LAMBE, CNRS, CY Cergy Paris Université, 95000 Cergy, France
| |
Collapse
|
22
|
Lo HY, Tsou TY, Hsu JP. Improving the osmotic energy conversion efficiency of multiple nanopores by a cross flow. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Chung CY, Hsu JP. Nanosensing of Acetylcholine Molecules: Influence of the Association Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:289-298. [PMID: 34962808 DOI: 10.1021/acs.langmuir.1c02493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A bullet-shaped nanopore surface modified by two polyelectrolyte (PE) layers, an inner polyethyleneimine (PEI) layer and an outer p-sulfonatocalix[4]-arene (SCX4) layer, is applied to sense trace levels of acetylcholine (Ach) molecules. We show that the higher the order of the association reaction of Ach with SCX4, the smaller the difference between the ionic current when Ach is present and that when it is absent, and so is the difference in the space charge density. In addition, the larger the binding constant K of that reaction, the lower the detection limit but narrower the detection range. Choosing pH 7 is most appropriate because if the pH is low, the concentration polarization of H+ is significant, and as it gets high, both PE layers become uncharged. At pH 7 and K = 2 × 107 L/mol, the detection limit of the nanopore ranges from 1 to 10 nM, which is orders of magnitude lower than that of the other approaches.
Collapse
Affiliation(s)
- Chia-Yang Chung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Liu Z, Liu X, Wang Y, Yang D, Li C. Ion current rectification in asymmetric charged bilayer nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Karimzadeh M, Seifollahi Z, Khatibi M, Ashrafizadeh SN. Impacts of the shape of soft nanochannels on their ion selectivity and current rectification. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
28
|
Chen YT, Hsu JP. Pressure-driven power generation and ion separation using a non-uniformly charged nanopore. J Colloid Interface Sci 2021; 607:1120-1130. [PMID: 34571299 DOI: 10.1016/j.jcis.2021.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Due to its versatile potential applications, nanofluidic devices have drawn much attention of researches in various fields. Among these, pressure-driven power generation is considered as a candidate for the next generation alternative green energy source, and pressure-driven ion separation (nanofiltration) for desalination. Aiming to achieve a better performance in these two representative cases, a cylindrical nanopore having different types of non-uniform surface charge profile is adopted, and its performance under various conditions assessed. We show that lower the surface charge density near the nanopore inlet region can suppress the effect of ion concentration polarization (ICP) and improve the selectivity, thereby enhancing appreciably its power generation performance. For a fixed averaged surface charge density, if the bulk salt concentration is low, the higher the surface charge density near the nanopore openings, the better its performance. The degree of ICP can be alleviated by applying a sufficiently large pressure difference. Although previous studies showed that salt rejection is influenced significantly by the profile of the electric field inside a nanopore, we find that the electric field at nanopore openings also plays a role. Through choosing appropriately the surface charge profile, it is possible to solve the trade-off between rejection and flow rate.
Collapse
Affiliation(s)
- Yue-Ting Chen
- Department of Chemical Engineering, National Taiwan University, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taiwan.
| |
Collapse
|
29
|
Ngom SM, Potier IL, Haghiri-Gosnet AM, Gamby J. Modeling the role played by nanoslit lengths on conductance changes into micro nano microfluidics devices. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Khatibi M, Sadeghi A, Ashrafizadeh SN. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Phys Chem Chem Phys 2021; 23:2211-2221. [PMID: 33439162 DOI: 10.1039/d0cp05974a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically investigate the feasibility of enhancing the reverse electrodialysis power generation in nanochannels by covering the surface with a polyelectrolyte layer (PEL). Along these lines, two conical nanochannels are considered that differ in the extent of the covering. Each nanochannel connects two large reservoirs filled with KCl electrolytes of different ionic concentrations. Considering the Poisson-Nernst-Planck and Navier-Brinkman equations, finite-element-based numerical simulations are performed under a steady-state. The influences of the PEL properties and the salinity gradient on the reverse electrodialysis characteristics are examined in detail via a thorough parametric study. It is shown that the maximum power generated is an increasing function of the charge density and the thickness of the PEL. This means that the maximum power generated may be theoretically increased to any desired degree by covering the nanochannel surface with a sufficiently dense and thick PEL. Considering a typical PEL with a charge density of 100 mol m-3 and a thickness of 8 nm along with a high-to-low concentration ratio of 1000, we demonstrate that it is possible to extract a power density of 51.5 W m-2, which is nearly three times the maximum achievable value employing bare conical nanochannels at the same salinity gradient.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | | | | |
Collapse
|
31
|
Wu CT, Hsu JP. Electrokinetic behavior of bullet-shaped nanopores modified by functional groups: Influence of finite thickness of modified layer. J Colloid Interface Sci 2021; 582:741-751. [PMID: 32911418 DOI: 10.1016/j.jcis.2020.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
We examined theoretically the electrokinetic behavior of a bullet-shaped nanopore modified by a functional layer, focusing on the influence of its thickness. The nanopore contains both fixed surface charge coming from the original bare surface, and space fixed charge from the modified layer. The results of numerical simulation reveal that the presence of this layer is crucial to the electrokinetic behavior of the nanopore. In particular, its softness is capable of influencing ionic profiles through electroosmotic flow (EOF). Unlike a conical nanopore where its surface normal vector is constant, that of the present bullet-shaped nanopore varies along the pore axis, thereby affecting the degree of EOF, which in turn, can make the ionic profile inside the modified layer more uniform. This is crucial to the applications of the nanopore, for example, in mimicking biological membranes and sensing metal ions.
Collapse
Affiliation(s)
- Chun-Ting Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
32
|
Tu J, Zhou Z, Liu Y, Li T, Lu S, Xiao L, Xiao P, Zhang G, Sun Z. Nanochannel-based sensor for the detection of lead ions in traditional Chinese medicine. RSC Adv 2021; 11:3751-3758. [PMID: 35424271 PMCID: PMC8694145 DOI: 10.1039/d0ra10157e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023] Open
Abstract
Lead ions (Pb2+) are used in the quality control of traditional Chinese medicine (TCM) preparations because they are highly toxic to human health. At present, sophisticated analytical instrumentation and complicated procedures for sample analysis are needed for the determination of Pb2+. Herein, a simple, fast, and sensitive peptide-modified nanochannel sensor to detect Pb2+ in TCM is reported, which is based on a Pb2+-specific peptide modified porous anodized aluminum membrane (PAAM). This peptide-based nanochannel clearly has the highest selectivity for Pb2+ when compared to other heavy metal ions, including As2+, Cd3+, Co2+, Cr2+, Cu2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, and Zn2+. Based on linear ranges from 0.01 to 0.16 μM and 10 to 100 μM, the detection limit was calculated to be 0.005 μM. Moreover, this peptide-based nanochannel sensor was successfully used to detect Pb2+ in complex TCM samples. In addition, when compared with the gold standard atomic absorption spectrophotometry (AAS) method, the recovery of the peptide-modified nanochannel sensor was between 87.7% and 116.8%. The experimental results prove that this new sensor is able to achieve accurate detection of Pb2+ in TCM samples. Thus, this sensor system could provide a simple assay for sensitive and selective detection of Pb2+ in TCM, thereby showing great potential in the practical application for the quality control of heavy metals in TCM.
Collapse
Affiliation(s)
- Jiyuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
| | - Tingxian Li
- School of Pharmacy, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
| | - Shumin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China +86-27-68890259 +86-27-68890259
| | - Ling Xiao
- School of Pharmacy, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China
| | - Pingping Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China +86-27-68890259 +86-27-68890259
| | - Guojun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China +86-27-68890259 +86-27-68890259
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine 1 Huangjia Lake West Road Wuhan 430065 PR China +86-27-68890259 +86-27-68890259
| |
Collapse
|
33
|
Huang WC, Hsu JP. Ultrashort nanopores of large radius can generate anomalously high salinity gradient power. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28148-28157. [PMID: 32449855 DOI: 10.1021/acsami.0c05102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid-state nanochannels have attracted substantial attention of the scientific community due to their remarkable control of ionic transport and the feasibility to regulate the iontronic output by different stimuli. Most of the developed nanodevices are subjected to complex modification methods or show functional responsiveness only in moderate-ionic-strength solutions. Within this project, we present a nanofluidic device with enhanced ionic current rectification properties attained by a simple one-step functionalization of single bullet-shaped polyethylene terephthalate (PET) nanochannels with polyaniline (PANI) that can work in high-ionic-strength solutions. The integration of PANI also introduces a broad pH sensitivity, which makes it possible to modulate the ionic transport behavior between anion-selective and cation-selective regimes depending on the pH range. Since PANI is an electrochemically active polymer, ionic transport also becomes dependent on the presence of redox stimuli in solution. We demonstrate that PANI-functionalized single-nanochannel membranes function as an efficient salinity gradient-based energy conversion device even in acidic concentrated salt solutions, opening the door to applications under a variety of novel operating conditions.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenshaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| |
Collapse
|
35
|
Han W, Chen X. A review: applications of ion transport in micro‐nanofluidic systems based on ion concentration polarization. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2020; 95:1622-1631. [DOI: 10.1002/jctb.6288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 01/12/2025]
Abstract
AbstractLab‐on‐a‐chip has been used widely in rapid, high‐throughput and low‐consumption analysis of samples in biochemistry. The ion concentration polarization (ICP) produced by ion‐selective transport of nanochannels provides a novel solution for problems in ultra‐low concentration sample detection, systems biology and desalination. This paper reviews the applications of ion transport based on the principle of ICP in micro‐nanofluidic systems. First, the fundamental governing equations of ICP are described. Then, the applications of nano‐electrokinetic ion enrichment and ion current rectification (ICR) are introduced. Nano‐electrokinetic ion enrichment is used mainly in the fields of molecular enrichment, ultra‐low concentration sample detection and seawater desalination. ICR is applied mainly to the sensitive detection of analytical substances such as proteins, nucleic acids and small molecules. The application of ion transport based on ICP principle is summarized and the possible directions worthy of further research are proposed. © 2019 Society of Chemical Industry
Collapse
Affiliation(s)
- Wenbo Han
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Xueye Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| |
Collapse
|
36
|
Lin TW, Hsu JP. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. J Colloid Interface Sci 2020; 564:491-498. [PMID: 32000071 DOI: 10.1016/j.jcis.2019.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Pressure-driven power generation is one of a simple, green, and promising energy sources. Owing to the overlapping of the electric double layer inside, nanochannel is capable of providing a platform for this power generation approach. Unfortunately, relevant studies, either experimental or theoretical, are very limited in the literature. Here, we present for the first time a comprehensively theoretical study on the pressure-driven energy conversion in a conical nanochannel having carboxyl functional groups, focusing on the influence of its tip size and the solution pH. An anomalous dependence of both the power generated and the efficiency on the latter are observed. Although the charge density on the nanochannel surface increases monotonically with increasing pH, both the power generated and the efficiency exhibit a local maximum as pH varies. This is because the streaming potential has a local maximum as pH varies. Power density (power generated/tip end cross sectional area) also shows a local maximum as the tip radius varies, and the radius at which the local maximum occurs decreases with increasing bulk salt concentration. In addition to explain successfully the behavior reported in the literature, our study also provides desirable and necessary information for designing relevant devices.
Collapse
Affiliation(s)
- Tsai-Wei Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
37
|
Han J, Bae C, Chae S, Choi D, Lee S, Nam Y, Lee C. High-efficiency power generation in hyper-saline environment using conventional nanoporous membrane. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Xu Y, Lu B, Fu L, Zhai J. Asymmetric heterostructured SiO2/Al2O3 nanofluidic diodes modulating ionic transport for highly efficient light-gating device. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ionic transport characteristics of negatively and positively charged conical nanopores in 1:1, 2:1, 3:1, 2:2, 1:2, and 1:3 electrolytes. J Colloid Interface Sci 2019; 553:639-646. [PMID: 31247503 DOI: 10.1016/j.jcis.2019.06.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
We study experimentally the current (I)-voltage (V) curves of 1:1, 2:1, 3:1, 2:2, 1:2, and 1:3 electrolytes in positively and negatively charged conically-shaped pores of nanoscale dimensions. The positive charges are poly(allylamine hydrochloride) chains functionalized on the pore surface by electrostatic interactions while the negative charges are carboxylic acid groups. Under physiological conditions, these fixed-charge groups are ionized and strongly interact with the different monovalent, divalent, and trivalent ions in the pore solution. The current rectification of the I-V curves and the membrane potentials provide fundamental information on the interaction of the pore charge groups with the mobile ions present at electrochemically and biologically relevant concentrations. The different pores and electrolytes studied, together with the abundant experimental data provided, can be useful to develop new theoretical simulations of transport phenomena in nanoscale solutions that are confined within charged surfaces.
Collapse
|
40
|
Zhang X, Han X, Qian S, Yang Y, Hu N. Tuning Ion Transport through a Nanopore by Self-Oscillating Chemical Reactions. Anal Chem 2019; 91:4600-4607. [DOI: 10.1021/acs.analchem.8b05823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| | - Xianwei Han
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Yuanjian Yang
- School of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, PR China
| |
Collapse
|