1
|
Wang H, Li C, Liu M, Dou D, Chen L, Zhang L, Zhao Q, Cong Y, Wang Y. Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction. J Colloid Interface Sci 2024; 675:915-925. [PMID: 39002241 DOI: 10.1016/j.jcis.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt-1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt-1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.
Collapse
Affiliation(s)
- Haibin Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Chunlei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Mengling Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Di Dou
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Luyun Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Limin Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Qiuping Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Yuanyuan Cong
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Yi Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
2
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
3
|
Tada K, Yamazaki SI, Asahi M, Ioroi T. Elucidation of the mechanism of melamine adsorption on Pt(111) surface via density functional theory calculations. Phys Chem Chem Phys 2023; 25:23047-23057. [PMID: 37599630 DOI: 10.1039/d3cp01777j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The oxygen reduction reaction (ORR) activity of Pt catalysts in polymer electrolyte fuel cells (PEFCs) should be enhanced to reduce Pt usage. The adsorption of heteroaromatic ring compounds such as melamine on the Pt surface can enhance its catalytic activity. However, melamine adsorption on Pt and the consequent ORR enhancement mechanism remain unclear. In this study, we performed density functional theory calculations to determine the adsorption structures of melamine/Pt(111). Melamine was coordinated to Pt via two N lone pairs on NH2 and N- in the triazine ring, resulting in a chemisorption structure with slight electron transfer. Four types of adsorption structures were identified: three-point adsorption (two amino groups and a triazine ring: Type A), two-point adsorption (one amino group and a triazine ring: Type B), two-point adsorption (two amino groups: Type C), and one-point adsorption (one amino group: Type D). The most stable structure was Type B. However, multiple intermediate structures were formed owing to the conformational changes from the most stable to other stable adsorption structures. The resonance structures of the adsorbed melamine stabilise the adsorption, as increased resonance allows for more electron delocalisation. In addition, the lone-pair orbital of the amino group in the adsorbed melamine acquires the characteristics of an sp3 hybrid orbital, which prevents horizontal adsorption on the Pt surface. We believe that understanding these adsorption mechanisms will help in the molecular design of organic molecule-decorated Pt catalysts and will lead to the reduction of Pt usage in PEFCs.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Shin-Ichi Yamazaki
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Masafumi Asahi
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Tsutomu Ioroi
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
4
|
Wang H, Wang Y, Li C, Zhao Q, Cong Y. Introduction of Surface Modifiers on the Pt-Based Electrocatalysts to Promote the Oxygen Reduction Reaction Process. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091544. [PMID: 37177089 PMCID: PMC10180714 DOI: 10.3390/nano13091544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The design of Pt-based electrocatalysts with high efficiency towards acid oxygen reduction reactions is the priority to promote the development and application of proton exchange membrane fuel cells. Considering that the Pt atoms on the surfaces of the electrocatalysts face the problems of interference of non-active species (such as OHad, OOHad, CO, etc.), high resistance of mass transfer at the liquid-solid interfaces, and easy corrosion when working in harsh acid. Researchers have modified the surfaces' local environment of the electrocatalysts by introducing surface modifiers such as silicon or carbon layers, amine molecules, and ionic liquids on the surfaces of electrocatalysts, which show significant performance improvement. In this review, we summarized the research progress of surface modified Pt-based electrocatalysts, focusing on the surface modification strategies and their mechanisms. In addition, the development prospects of surface modification strategies of Pt-based electrocatalysts and the limitations of current research are pointed out.
Collapse
Affiliation(s)
- Haibin Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yi Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Chunlei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qiuping Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuanyuan Cong
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
5
|
Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC. Catalysts 2023. [DOI: 10.3390/catal13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Recently, the focus of fuel cell technologies has shifted from light-duty automotive to heavy-duty vehicle applications, which require improving the stability of membrane electrode assemblies (MEAs) at high constant potential. The hydrophilicity of Pt makes it easy to combine with water molecules and then oxidize at high potential, resulting in poor durability of the catalyst. In this work, an ionic liquid [BMIM][NTF2] was used to modify the Pt catalyst (Pt/C + IL) to create a hydrophobic, antioxidant micro-environment in the catalyst layer (CL). The effect of [BMIM][NTF2] on the decay of the CL performance at high constant potential (0.85 V) for a long time was investigated. It was found that the performance attenuation of Pt/C + IL in the high-potential range (OCV 0.75 V) was less than that of commercial Pt/C after 10 h. The Pt-oxide coverage test showed that the hydrophobic micro-environment of the CL enhanced the stability by inhibiting Pt oxidation. In addition, the electrochemical recovery of Pt oxides showed that the content of recoverable oxides in Pt/C + IL was higher than that in commercial Pt/C. Overall, modifying the Pt catalyst with hydrophobic ionic liquid is an effective strategy to improve the catalyst stability and reduce the irreversible voltage loss caused by the oxide at high constant potential.
Collapse
|
6
|
YAMADA H, MATSUMOTO K, KURATANI K, ARIYOSHI K, MATSUI M, MIZUHATA M. Preface for the 66th Special Feature “Novel Aspects and Approaches to Experimental Methods for Electrochemistry”. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-66113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hirohisa YAMADA
- Department of Chemical Engineering, National Institute of Technology, Nara College
| | | | - Kentaro KURATANI
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kingo ARIYOSHI
- Graduate School of Engineering, Osaka Metropolitan University
| | | | - Minoru MIZUHATA
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| |
Collapse
|
7
|
Hu L, Shi L, Shen F, Tong Q, Lv X, Li Y, Liu Z, Ao L, Zhang X, Jiang G, Hou L. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment. WATER RESEARCH 2022; 225:119210. [PMID: 36215844 DOI: 10.1016/j.watres.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The high salinity and coexistence of scaling ions (Ca2+, Mg2+, HCO3-) in wastewater challenge the efficacy and durability of palladium (Pd)-mediated electrocatalytic hydrodechlorination (EHDC) reaction for chlorinated organic pollutant detoxification, due to the accompanying Cl- poisoning at Pd sites and scaling on electrode. In a concentrated NaCl solution (5.8 g L - 1) with Ca2+ (80.0 mg L - 1), Mg2+ (30.0 mg L - 1) and HCO3- (180.0 mg L - 1), the EHDC efficiency of Pd towards 2,4-dichlorophenol decreases significantly from 67.8% to 33.1% in 72.0 h of reaction, and the electrode is covered with layers of fluffy aragonite precipitate. Herein we demonstrate the inclusion of a commercial antiscalant 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) can prevent both scale formation and Cl- poisoning, leading to an efficient and steady EHDC process. A mechanistic study reveals that the unique dual function of PBTC primarily originates from the bearing phosphonate and carboxyl groups. With the large affinity of these groups (especially the phosphonate group) for scaling cations and Pd, the PBTC can chelate and stabilize the scaling cations in water and replace Cl- at Pd surface. It can also release protons, and trigger the formation of more electron-deficient Pdδ+ species via PBTC-Pd binding, leading to an enhanced EHDC. This work provides effective solutions to the scaling/poisoning issues that commonly encountered in real wastewater and paves a solid road for EHDC application in pollution abatement.
Collapse
Affiliation(s)
- Lin Hu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China; High Tech Inst Beijing, Beijing 100000, China; Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China.
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China.
| |
Collapse
|
8
|
Sulphonated melamine polymer for enhancing the oxygen reduction reaction activity and stability of a Pt catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Matsutori K, Olu P, Matsuoka M, Nakazawa T, Kinumoto T. Carbon black functionalized by grafting of Azo‐generated‐radicals as electrocatalyst support for the oxygen reduction reaction. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Koji Matsutori
- Graduate School of Engineering Oita University Oita Japan
| | - Pierre‐Yves Olu
- Department of Integrate Science and Technology, Faculty of Science and Technology Oita University Oita Japan
| | - Miki Matsuoka
- Department of Integrate Science and Technology, Faculty of Science and Technology Oita University Oita Japan
| | - Taichi Nakazawa
- Materials Research Laboratories Nissan Chemical Corporation Funabashi Japan
| | - Taro Kinumoto
- Department of Integrate Science and Technology, Faculty of Science and Technology Oita University Oita Japan
| |
Collapse
|
12
|
Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. NATURE NANOTECHNOLOGY 2021; 16:140-147. [PMID: 33479539 DOI: 10.1038/s41565-020-00824-w] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The past 30 years have seen progress in the development of Pt-based nanocatalysts for the oxygen reduction reaction, and some are now in production on a commercial basis and used for polymer electrolyte fuel cells (PEFCs) for automotives and other applications. Further improvements in catalytic activity are required for wider uptake of PEFCs, however. In laboratories, researchers have developed various catalysts that have much higher activities than commercial ones, and these state-of-the-art catalysts have potential to improve energy conversion efficiencies and reduce the usage of platinum in PEFCs. There are several technical issues that must be solved before they can be applied in fuel cell vehicles, which require a high power density and practical durability, as well as high efficiency. In this Review, the development history of Pt-based nanocatalysts and recent analytical studies are summarized to identify the origin of these technical issues. Promising strategies for overcoming those issues are also discussed.
Collapse
|
13
|
Jiang G, Shi X, Cui M, Wang W, Wang P, Johnson G, Nie Y, Lv X, Zhang X, Dong F, Zhang S. Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4072-4083. [PMID: 33438993 DOI: 10.1021/acsami.0c20994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present an enhanced catalytic efficiency of palladium (Pd) nanoparticles (NPs) for the electrocatalytic hydrodechlorination (EHDC) reaction by incorporating the tetraethylammonium chloride (TEAC) ligand into the surface of NPs. Both experimental and theoretical analyses reveal that the surface-adsorbed TEAC is converted to molecular amine (primarily triethylamine) under reductive potentials, forming a strong ligand-Pd interaction that is beneficial to the EHDC kinetics. Using the EHDC of 2,4-dichlorophenol (2,4-DCP), a dominant persistent pollutant identified by the U.S. Environmental Protection Agency, as an example, the Pd/amine composite delivers a mass activity of 2.32 min-1 gPd-1 and a specific activity of 0.16 min-1 cm-2 at -0.75 V versus Ag/AgCl, outperforming Pd and most of the previously reported catalysts. The mechanistic study reveals that the amine ligand offers three functions: the H+-pumping effect, the electronic effect, and the steric effect, providing a favorable environment for the generation of reactive hydrogen radicals (H*) for hydrogenolysis of the C-Cl bond. It also weakens the adsorption strength of EHDC products, alleviating their poisoning on Pd. Investigation into the intermediate products of EHDC on Pd/amine and the biological safety of the 2,4-DCP-contaminated water after EHDC treatment demonstrates that EHDC on Pd/amine is environmentally benign for halogenated organic pollutant abatement. This work suggests that the tuning of NP catalysis using facile ligand post-treatment may lead to new strategies to improve EHDC for environmental remediation applications.
Collapse
Affiliation(s)
- Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xuelin Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Meiyang Cui
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weilu Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Peng Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yudong Nie
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Fan Dong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Hsu CH, Pan ZB, Qu HT, Chen CR, Lin HP, Sun IW, Huang CY, Li CH. Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Adv 2021; 11:15738-15747. [PMID: 35481169 PMCID: PMC9030168 DOI: 10.1039/d1ra02100a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
A green synthesis method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop shell (WCS) using eggshell waste as both a nitrogen-dopant and an activating agent. It is shown that the surface area, porosity, yield and nitrogen content of the as-prepared N-MPCs can be easily controlled by adjusting the activation temperature. Moreover, in oxygen reduction reaction (ORR) tests performed in O2-saturated 0.1 M KOH(aq) electrolyte containing 1.0 M methanol, the N-MPC catalysts show a high ORR stability and good resistance to methanol corrosion. In addition, as a cathode material in Al–air battery tests, the N-MPCs achieve a power density of 16 mW g−1 in a saturated NaCl(aq) electrolyte. Overall, the results show that the N-MPCs have a promising potential as a green and sustainable material for ORR catalysis applications. A green synthetic method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop-shell (WCS) biochar by using eggshell waste as both a nitrogen-dopant and an activating agent.![]()
Collapse
Affiliation(s)
- Chun-Han Hsu
- General Education Center
- National Tainan Junior College of Nursing
- Tainan 700
- Taiwan
| | - Zheng-Bang Pan
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Hau-Ting Qu
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Chuan-Ren Chen
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Hong-Ping Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - I-Wen Sun
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Ching-Ying Huang
- Green Energy and Environment Research Laboratories
- Industrial Technology Research Institute
- Tainan 71150
- Taiwan
| | - Chun-Han Li
- Green Energy and Environment Research Laboratories
- Industrial Technology Research Institute
- Tainan 71150
- Taiwan
| |
Collapse
|
15
|
Yamazaki SI, Asahi M, Taguchi N, Ioroi T, Kishimoto Y, Daimon H, Inaba M, Koga K, Kurose Y, Inoue H. Creation of a Highly Active Pt/Pd/C Core–Shell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-( tert-butyl)-tetraazaporphyrin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shin-ichi Yamazaki
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Masafumi Asahi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Noboru Taguchi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Tsutomu Ioroi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yuko Kishimoto
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Hideo Daimon
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Minoru Inaba
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Kazunori Koga
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| | - Yutaka Kurose
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| | - Hideo Inoue
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| |
Collapse
|
16
|
Lenne Q, Leroux YR, Lagrost C. Surface Modification for Promoting Durable, Efficient, and Selective Electrocatalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.202000132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quentin Lenne
- ISCR-UMR 6226CNRS and Univ Rennes Campus de Beaulieu F-35042 Rennes France
| | - Yann R. Leroux
- ISCR-UMR 6226CNRS and Univ Rennes Campus de Beaulieu F-35042 Rennes France
| | - Corinne Lagrost
- ISCR-UMR 6226CNRS and Univ Rennes Campus de Beaulieu F-35042 Rennes France
| |
Collapse
|
17
|
Yamazaki SI, Asahi M, Taguchi N, Ioroi T. Electrochemical analysis of the porphyrazine-induced enhancement of ORR activity of Pt catalysts for the development of porphyrazine-adsorbed Pt catalysts. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|