1
|
Petrikaitė V, Talaikis M, Mikoliūnaitė L, Gkouzi AM, Trusovas R, Skapas M, Niaura G, Stankevičius E. Stability and SERS signal strength of laser-generated gold, silver, and bimetallic nanoparticles at different KCl concentrations. Heliyon 2024; 10:e34815. [PMID: 39144937 PMCID: PMC11320324 DOI: 10.1016/j.heliyon.2024.e34815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Noble metal nanoparticles, specifically gold and silver, are extensively utilized in sensors, catalysts, surface-enhanced Raman scattering (SERS), and optical-electronic components due to their unique localized surface plasmon resonance (LSPR) properties. The production of these nanoparticles involves various methods, but among the environmentally friendly approaches, laser ablation stands out as it eliminates the need for toxic chemicals during purification. However, nanoparticle aggregation poses a challenge in laser ablation, necessitating the addition of extra materials that contaminate the otherwise clean process. In this study, we investigate the effectiveness of a biocompatible material, potassium chloride (KCl), in preventing particle aggregation. Although salt is known to trigger aggregation, we observed that certain concentrations of KCl can slow down this process. Over an eight-week period, we examined the aggregation rate, extinction behavior, and stability of gold, silver, and hybrid nanoparticles generated in different KCl concentrations. Extinction spectra, SEM images, SERS signal strength, and zeta potential were analyzed. Our results demonstrate that laser ablation in water and salt solutions yields nanoparticles with a spherical shape and a negative zeta potential. Importantly, we identified the optimal concentration of potassium chloride salt that maintains solution stability and SERS signal strength. Adsorbed chloride ions on silver nanoparticles were evidenced by low-frequency SERS band near 242 cm-1. A better understanding of the effect of KCl concentration on the properties of noble metal nanoparticles can lead to improved generation protocols and the development of tailored nanoparticle systems with enhanced stability and SERS activity.
Collapse
Affiliation(s)
- Vita Petrikaitė
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliūnaitė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Aikaterini-Maria Gkouzi
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Romualdas Trusovas
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Martynas Skapas
- Department of Characterization of Materials Structure, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Evaldas Stankevičius
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| |
Collapse
|
2
|
Talaikis M, Mikoliunaite L, Gkouzi AM, Petrikaitė V, Stankevičius E, Drabavičius A, Selskis A, Juškėnas R, Niaura G. Multiwavelength SERS of Magneto-Plasmonic Nanoparticles Obtained by Combined Laser Ablation and Solvothermal Methods. ACS OMEGA 2023; 8:49396-49405. [PMID: 38162725 PMCID: PMC10753541 DOI: 10.1021/acsomega.3c08007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department
of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Aikaterini-Maria Gkouzi
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vita Petrikaitė
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Evaldas Stankevičius
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanorių Av. 231, LT-02300 Vilnius, Lithuania
| | - Audrius Drabavičius
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Algirdas Selskis
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Remigijus Juškėnas
- Department
of Characterization of Materials Structure, Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Shen H, Wang Y, Cao L, Xie Y, Wang L, Chu X, Shi K, Wang S, Yu M, Liu R, Zhang J, Li C, Weng Z, Wang Z. Fabrication of periodic microscale stripes of silver by laser interference induced forward transfer and their SERS properties. NANOTECHNOLOGY 2021; 33:115302. [PMID: 34844231 DOI: 10.1088/1361-6528/ac3e34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The micro-stripe structure was prepared by laser interference induced forward transfer technique, composed of Ag nano-particles (NPs). The effects of the film thickness with the carbon nano-particles mixed polyimide (CNPs@PI), Ag film thickness, and laser fluence were studied on the transferred micro-stripe structure. The periodic Ag micro-stripe with good resolution was obtained in a wide range of CNPs@PI film thickness from ∼0.5 to ∼1.0μm for the Ag thin film ∼20 nm. The distribution of the Ag NPs composing the micro-stripe was compact. Nevertheless, the average size of the transferred Ag NPs was increased from ∼41 to ∼197 nm with the change of the Ag donor film from ∼10 to ∼40 nm. With the increase of the laser fluence from 102 to 306 mJ·cm-2per-beam, the transferred Ag NPs became aggregative, improving the resolution of the corresponding micro-stripe. Finally, the transferred Ag micro-stripe exhibited the significant surface enhanced Raman scattering (SERS) property for rhodamine B (RhB). While the concentration of the RhB reached 10-10mol·L-1, the Raman characteristic peaks of the RhB were still observed clearly at 622, 1359 and 1649 cm-1. These results indicate that the transferred Ag micro-stripe has potential application as a SERS chip in drug and food detection.
Collapse
Affiliation(s)
- Huijuan Shen
- School of Science, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- School of Science, Guangdong University of Petrochemical Technology, Guangdong 525000, People's Republic of China
| | - Yaode Wang
- School of Science, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ying Xie
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xueying Chu
- School of Science, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Kaixi Shi
- School of Science, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Shenzhi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Miaomiao Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jingran Zhang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Changli Li
- School of Science, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
4
|
Stankevičius E, Ignatjev I, Petrikaitė V, Selskis A, Niaura G. Gold Nanoparticles Generated Using the Nanosecond Laser Treatment of Multilayer Films and Their Use for SERS Applications. ACS OMEGA 2021; 6:33889-33898. [PMID: 34926936 PMCID: PMC8675026 DOI: 10.1021/acsomega.1c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates fabricated using a repeated laser treatment of thin gold films are demonstrated. The presented SERS substrates consist of the gold nanoparticles, whose density and size depend on the used film thickness and number of treated films. The larger number of the treated gold film layers increases the amount of larger nanoparticles (size >20 nm). However, a large number of small nanoparticles (5-20 nm) in all cases is also observed. The manufactured SERS substrates exhibit a high enhancement factor, which is in the range of 106. The enhancement factor can be increased by adding an additional Au coating on the top of nanoparticles generated from a single gold layer. The demonstrated laser-based fabrication approach of large-scale SERS substrates is simple, reliable, without the use of chemicals for the reduction and stabilization of nanoparticles, and cost-effective.
Collapse
Affiliation(s)
- Evaldas Stankevičius
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanoriu Av. 231, LT-02300 Vilnius, Lithuania
| | - Ilja Ignatjev
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Sauletekio al. 3, LT-10257 Vilnius, Lithuania
| | - Vita Petrikaitė
- Department
of Laser Technologies, Center for Physical
Sciences and Technology (FTMC), Savanoriu Av. 231, LT-02300 Vilnius, Lithuania
| | - Algirdas Selskis
- Department
of Characterisation of Materials Structure, Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Sauletekio al. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Hitaishi VP, Mazurenko I, Vengasseril Murali A, de Poulpiquet A, Coustillier G, Delaporte P, Lojou E. Nanosecond Laser-Fabricated Monolayer of Gold Nanoparticles on ITO for Bioelectrocatalysis. Front Chem 2020; 8:431. [PMID: 32582633 PMCID: PMC7287402 DOI: 10.3389/fchem.2020.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Redox enzymes can be envisioned as biocatalysts in various electrocatalytic-based devices. Among factors that play roles in bioelectrochemistry limitations, the effect of enzyme-enzyme neighboring interaction on electrocatalysis has rarely been investigated, although critical in vivo. We report in this work an in-depth study of gold nanoparticles prepared by laser ablation in the ultimate goal of determining the relationship between activity and enzyme density on electrodes. Nanosecond laser interaction with nanometric gold films deposited on indium tin oxide support was used to generate in situ gold nanoparticles (AuNPs) free from any stabilizers. A comprehensive analysis of AuNP size and coverage, as well as total geometric surface vs. electroactive surface is provided as a function of the thickness of the treated gold layer. Using microscopy and electrochemistry, the long-term stability of AuNP-based electrodes in the atmosphere and in the electrolyte is demonstrated. AuNPs formed by laser treatment are then modified by thiol chemistry and their electrochemical behavior is tested with a redox probe. Finally, enzyme adsorption and bioelectrocatalysis are evaluated in the case of two enzymes, i.e., the Myrothecium verrucaria bilirubin oxidase and the Thermus thermophilus laccase. Behaving differently on charged surfaces, they allow demonstrating the validity of laser treated AuNPs for bioelectrocatalysis.
Collapse
Affiliation(s)
- Vivek Pratap Hitaishi
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Anjali Vengasseril Murali
- Aix Marseille Univ, CNRS, LP3, UMR 7341, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Anne de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Gaëlle Coustillier
- Aix Marseille Univ, CNRS, LP3, UMR 7341, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Philippe Delaporte
- Aix Marseille Univ, CNRS, LP3, UMR 7341, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| |
Collapse
|
6
|
Ruffino F, Grimaldi MG. Nanostructuration of Thin Metal Films by Pulsed Laser Irradiations: A Review. NANOMATERIALS 2019; 9:nano9081133. [PMID: 31390842 PMCID: PMC6723593 DOI: 10.3390/nano9081133] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Metal nanostructures are, nowadays, extensively used in applications such as catalysis, electronics, sensing, optoelectronics and others. These applications require the possibility to design and fabricate metal nanostructures directly on functional substrates, with specifically controlled shapes, sizes, structures and reduced costs. A promising route towards the controlled fabrication of surface-supported metal nanostructures is the processing of substrate-deposited thin metal films by fast and ultrafast pulsed lasers. In fact, the processes occurring for laser-irradiated metal films (melting, ablation, deformation) can be exploited and controlled on the nanoscale to produce metal nanostructures with the desired shape, size, and surface order. The present paper aims to overview the results concerning the use of fast and ultrafast laser-based fabrication methodologies to obtain metal nanostructures on surfaces from the processing of deposited metal films. The paper aims to focus on the correlation between the process parameter, physical parameters and the morphological/structural properties of the obtained nanostructures. We begin with a review of the basic concepts on the laser-metal films interaction to clarify the main laser, metal film, and substrate parameters governing the metal film evolution under the laser irradiation. The review then aims to provide a comprehensive schematization of some notable classes of metal nanostructures which can be fabricated and establishes general frameworks connecting the processes parameters to the characteristics of the nanostructures. To simplify the discussion, the laser types under considerations are classified into three classes on the basis of the range of the pulse duration: nanosecond-, picosecond-, femtosecond-pulsed lasers. These lasers induce different structuring mechanisms for an irradiated metal film. By discussing these mechanisms, the basic formation processes of micro- and nano-structures is illustrated and justified. A short discussion on the notable applications for the produced metal nanostructures is carried out so as to outline the strengths of the laser-based fabrication processes. Finally, the review shows the innovative contributions that can be proposed in this research field by illustrating the challenges and perspectives.
Collapse
Affiliation(s)
- Francesco Ruffino
- Dipartimento di Fisica e Astronomia "Ettore Majorana"-Università di Catania and MATIS CNR-IMM, via S. Sofia 64, 95123 Catania, Italy.
| | - Maria Grazia Grimaldi
- Dipartimento di Fisica e Astronomia "Ettore Majorana"-Università di Catania and MATIS CNR-IMM, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Liu S, Yuan T, Wei W, Su H, Wang W. Photoassisted Electrochemical Micropatterning of Gold Film. Anal Chem 2019; 91:9413-9418. [PMID: 31282660 DOI: 10.1021/acs.analchem.9b01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical etching is a powerful and popular method for fabricating micropatterns on metal substrates for use in electronic devices, electrochemical sensors, and plasmonic substrates. In order to achieve micropatterning, either a prepatterned insulating layer (mask) or a scanning microelectrode is often required to selectively trigger electrochemical etching at the desired locations. In the present work, we employed a well-focused light beam to enable the photoassisted electrochemical etching of gold film with a spatial resolution close to the optical diffraction limit (∼300 nm). It was found that the simultaneous application of light irradiation and appropriate potential were critical for the oxidative dissolution (i.e., etching) of gold to occur. Superior controllability of light beam allowed for the direct-write micropatterning without the need of mask or probe. Etching kinetics and mechanism were also studied by monitoring the dynamic evolution of optical transparency with a conventional transmission bright-field microscope, together with characterizations on the as-obtained patterns with atomic force microscopy and electron microscopy. This study is anticipated to contribute a feasible method for the micropatterning of gold film with implications for nanoelectronics and electrochemical sensors.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hua Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|