1
|
Scholz F. Essay for the Rosarium Philosophicum on Electrochemistry Electrochemical Analysis – What it was, is, and Possibly will be. Isr J Chem 2020. [DOI: 10.1002/ijch.202000078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fritz Scholz
- Institut of Biochemistry University of Greifswald Germany 17489 Greifswald Felix-Hausdorff-Str. 4
| |
Collapse
|
2
|
|
3
|
Fu L, Zheng Y, Zhang P, Zhang H, Wu M, Zhang H, Wang A, Su W, Chen F, Yu J, Cai W, Lin CT. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry 2019; 129:199-205. [PMID: 31200249 DOI: 10.1016/j.bioelechem.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
Abstract
The identification of plant species not only is a hobby but also has important application value in plant resources science. Traditional plant identification often relies on the experience of botanists. The infrageneric identification of plants is easily mistaken due to similarities in organ features. In this work, we propose an electrochemical method to obtain fingerprints of plant petal tissue. Fourteen species of Lycoris were used as a model for validating this methodology. Pattern and color recognition were established for visualization of electrochemical fingerprints recorded after various solvent extractions. In addition, the infrageneric relationships of these Lycoris species were deduced from the electrochemical fingerprints since the type and content of electroactive compounds in plants are controlled by genes. The results indicate that the electrochemical fingerprints of Lycoris petals are correlated with the infrageneric relationships of native Lycoris species.
Collapse
Affiliation(s)
- Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, Jiangsu Province, PR China.
| | | | - Haoyang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Mengyao Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Aiwu Wang
- Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, PR China.
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Wen Cai
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|