1
|
Farina M, Rondino F, Lapi A, Falconieri M, Gagliardi S, Daidone I, Fraschetti C, Bodo E, Filippi A. Applying Computational Spectroscopy Methods to Raman Spectra of Dicationic, Imidazolium-Based, Ionic Liquids. J Phys Chem B 2024; 128:10650-10660. [PMID: 39435745 DOI: 10.1021/acs.jpcb.4c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Studying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase. In this frame, we validate, vis-à-vis experimental data, an efficient theoretical method to compute the Raman spectra in the liquid phase of four especially synthesized dicationic ionic liquids and to assess the conformational cation/anion contributions to the experimental bands. The computational procedure is based on the assessment of the most probable conformations as evaluated by a computational protocol involving both molecular dynamics and ab initio methods.
Collapse
Affiliation(s)
- Matteo Farina
- Department of Chemistry, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Flaminia Rondino
- Nuclear Department (NUC), ENEA - C.R. Casaccia, via Anguillarese, 301, 00123 Rome, Italy
| | - Andrea Lapi
- Department of Chemistry, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
- Institute for Biological Systems (ISB-CNR), Sede Secondaria di Roma, Meccanismi di Reazione, c/o Department of Chemistry, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mauro Falconieri
- Nuclear Department (NUC), ENEA - C.R. Casaccia, via Anguillarese, 301, 00123 Rome, Italy
| | - Serena Gagliardi
- Nuclear Department (NUC), ENEA - C.R. Casaccia, via Anguillarese, 301, 00123 Rome, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio - (Coppito 2), 67100 L'Aquila, Italy
| | - Caterina Fraschetti
- Department of Chemistry and Drug Technologies, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Antonello Filippi
- Department of Chemistry and Drug Technologies, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
3
|
Hossain MI, Wang H, Adhikari L, Baker GA, Mezzetta A, Guazzelli L, Mussini P, Xie W, Blanchard GJ. Structure-Dependence and Mechanistic Insights into the Piezoelectric Effect in Ionic Liquids. J Phys Chem B 2024; 128:1495-1505. [PMID: 38301038 PMCID: PMC10961722 DOI: 10.1021/acs.jpcb.3c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
We reported recently that two imidazolium room-temperature ionic liquids (RTILs) exhibit the direct piezoelectric effect (J. Phys. Chem. Lett., 2023, 14, 2731-2735). We have subsequently investigated several other RTILs with pyrrolidinium and imidazolium cations and tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions in an effort to gain insight into the generality and mechanism of the effect. All the RTILs studied exhibit the direct piezoelectric effect, with a magnitude (d33) and threshold force that depend on the structures of both the cation and anion. The structure-dependence and existence of a threshold force for the piezoelectric effect are consistent with a pressure-induced liquid-to-crystalline solid phase transition in the RTILs, and this is consistent with experimental X-ray diffraction data.
Collapse
Affiliation(s)
- Md. Iqbal Hossain
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Haozhe Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrea Mezzetta
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Patrizia Mussini
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Weiwei Xie
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G. J. Blanchard
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Liu H, Chen J, Chen M, Wang J, Qiu H. Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Anal Chim Acta 2023; 1274:341496. [PMID: 37455089 DOI: 10.1016/j.aca.2023.341496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
5
|
Gano M, Janus E, Schilf W. Chiral Pyrrolidinium Ionic Liquids with (-)-Borneol Fragment in the Cation - Synthesis, Physicochemical Properties and Application in Diels-Alder Reaction. Chemphyschem 2023; 24:e202300251. [PMID: 37278666 DOI: 10.1002/cphc.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
A series of chiral pyrrolidinium salts containing (1 S)-endo-(-)-born-2-yloxymethyl substituent in the structure of the cation and six different anions: chloride, tetrafluoroborate [BF4 ]- , hexafluorophosphate [PF6 ]- , trifluoromethanesulfonate [OTf]- , bis(trifluoromethylsulfonyl)imide [NTf2 ]- , bis(pentafluoroethylsulfonyl)imide [NPf2 ]- and perfluorobutanesulfonate [C4 FS]- were efficiently prepared and extensively characterized. The enantiomeric purity of them was confirmed by NMR analysis with a chemical shift reagent. All salts were characterized with the specific rotation, the solubility in commonly used solvents, thermal properties, including phase transition temperatures and thermal stability. Salts with [PF6 ]- , [C4 FS]- , [NTf2 ]- and [NPf2 ]- anions were classified as chiral ionic liquids (CILs). Moreover, salts with [NTf2 ]- and [NPf2 ]- anions were in the liquid state at room temperature and below. Therefore, density and dynamic viscosity, the surface tension and the contact angle on three different surfaces were also measured for them. Additionally, these chiral ionic liquids were tested as solvents in Diels-Alder reaction.
Collapse
Affiliation(s)
- Marcin Gano
- Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322, Szczecin, Poland
| | - Ewa Janus
- Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322, Szczecin, Poland
| | - Wojciech Schilf
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Recent applications of ionic liquid-based tags in glycoscience. Carbohydr Res 2022; 520:108643. [PMID: 35977445 DOI: 10.1016/j.carres.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The functionalization of glycosides with ionic compounds such as ionic liquids provides enhanced polarity for the labelled glycans thanks to the presence of a permanent positive charge. The chemical derivatisation of glycans with ionic liquids constitutes an emerging strategy to boost the detection sensitivity in MS applications. This allows the straightforward monitoring and detection of the presence of labelled glycans in complex matrices and in those cases where very limited amounts of material were available such as in biological samples and chemoenzymatic reactions. The use of ionic liquid based derivatisation agents can be further exploited for the labelling of live cells via metabolic oligosaccharide engineering for the detection of cancer biomarkers and for the tuning of live cells-surface properties with implications in cancer prognosis and progression. In this mini-review we summarise the latest development of the ionic liquid based derivatisation agents in glycoscience focussing on their use for sensitive MS applications.
Collapse
|
8
|
Zullo V, Grecchi S, Araneo S, Galli M, Arnaboldi S, Micheli L, Mezzetta A, Guazzelli L, Iuliano A, Mussini PR. Electroactive bio-based chiral tweezers:attractive selectors for enantioselective voltammetry. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Maruyama J, Maruyama S, Kashiwagi Y, Watanabe M, Shinagawa T, Nagaoka T, Tamai T, Ryu N, Matsuo K, Ohwada M, Chida K, Yoshii T, Nishihara H, Tani F, Uyama H. Helically aligned fused carbon hollow nanospheres with chiral discrimination ability. NANOSCALE 2022; 14:3748-3757. [PMID: 35167641 DOI: 10.1039/d1nr07971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the functions of carbon materials with precisely controlled nanostructures have been reported in many studies, their chiral discriminating abilities have not been reported yet. Herein, chiral discrimination is achieved using helical carbon materials devoid of chiral attachments. A Fe3O4 nanoparticle template with ethyl cellulose (carbon source) is self-assembled on dispersed multiwalled carbon nanotubes (MWCNTs) fixed in a lamellar structure, with helical nanoparticle alignment induced by the addition of a binaphthyl derivative. Carbonization followed by template removal produces helically aligned fused carbon hollow nanospheres (CHNSs) with no chiral molecules left. Helicity is confirmed using vacuum-ultraviolet circular dichroism spectroscopy. Chiral discrimination, as revealed by the electrochemical reactions of binaphthol and a chiral ferrocene derivative in aqueous and nonaqueous electrolytes, respectively, is attributable to the chiral space formed between the CHNS and MWCNT surfaces.
Collapse
Affiliation(s)
- Jun Maruyama
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Shohei Maruyama
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Yukiyasu Kashiwagi
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Mitsuru Watanabe
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Tsutomu Shinagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Toru Nagaoka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Toshiyuki Tamai
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Naoya Ryu
- Kumamoto Industrial Research Institute, 3-11-38, Higashimachi, Higashi-ku, Kumamoto 862-0901, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Mao Ohwada
- Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Koki Chida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
10
|
Zhang Q, Ren S, Li A, Zhang J, Xue S, Sun X. Tartaric acid-based ionic liquid-type chiral selectors: Effect of cation species on their enantioseparation performance in capillary electrophoresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
2,12-Diaza[6]helicene: An Efficient Non-Conventional Stereogenic Scaffold for Enantioselective Electrochemical Interphases. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The new configurationally stable, unsymmetrical 2,12-diaza[6]helicene was synthesized as a racemate and the enantiomers were separated in an enantiopure state by semi-preparative HPLC on chiral stationary phase. Under selected alkylation conditions it was possible to obtain both the enantiopure 2-N-mono- and di-N-ethyl quaternary iodides. Metathesis with bis(trifluoromethanesulfonyl)imide anion gave low-melting salts which were tested as inherently chiral additives to achiral ionic liquids for the electrochemical enantiodiscrimination of chiral organic probes in voltammetric experiments. Remarkable differences in the oxidation potentials of the enantiomers of two probes, a chiral ferrocenyl amine and an aminoacid, were achieved; the differences increase with increasing additive concentration and number of alkylated nitrogen atoms.
Collapse
|
12
|
Hosseini S, Falahati N, Gutiérrez A, Alavianmehr M, Khalifeh R, Aparicio S. On the properties of N-methyl-2-pyrrolidonium hydrogen sulfate ionic liquid and alkanol mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Kaur N, Rahim JU, Rai R, Chopra HK. Synthesis and Application of (
S
)‐Nicotine‐Based Chiral Ionic Liquids in Enantiomeric Recognition by Using Fluorescence Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nirmaljeet Kaur
- Chemistry Department Sant Longowal Institute of Engineering and Technology Longowal 148106, Distt. Sangrur Punjab India
| | - Junaid Ur Rahim
- Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002- India
| | - Rajkishore Rai
- Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002- India
| | - Harish Kumar Chopra
- Chemistry Department Sant Longowal Institute of Engineering and Technology Longowal 148106, Distt. Sangrur Punjab India
| |
Collapse
|
14
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
15
|
Natural-based chiral task-specific deep eutectic solvents: A novel, effective tool for enantiodiscrimination in electroanalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Grecchi S, Ferdeghini C, Longhi M, Mezzetta A, Guazzelli L, Khawthong S, Arduini F, Chiappe C, Iuliano A, Mussini PR. Chiral Biobased Ionic Liquids with Cations or Anions including Bile Acid Building Blocks as Chiral Selectors in Voltammetry. ChemElectroChem 2021. [DOI: 10.1002/celc.202100200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Claudio Ferdeghini
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Mariangela Longhi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Andrea Mezzetta
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Siriwat Khawthong
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Fabiana Arduini
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale Università degli Studi di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | | |
Collapse
|
17
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
18
|
Fontana F, Carminati G, Bertolotti B, Mussini PR, Arnaboldi S, Grecchi S, Cirilli R, Micheli L, Rizzo S. Helicity: A Non-Conventional Stereogenic Element for Designing Inherently Chiral Ionic Liquids for Electrochemical Enantiodifferentiation. Molecules 2021; 26:molecules26020311. [PMID: 33435346 PMCID: PMC7828060 DOI: 10.3390/molecules26020311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022] Open
Abstract
Configurationally stable 5-aza[6]helicene (1) was envisaged as a promising scaffold for non-conventional ionic liquids (IL)s. It was prepared, purified, and separated into enantiomers by preparative HPLC on a chiral stationary phase. Enantiomerically pure quaternary salts of 1 with appropriate counterions were prepared and fully characterized. N-octyl-5-aza[6]helicenium bis triflimidate (2) was tested in very small quantities as a selector in achiral IL media to perform preliminary electrochemical enantiodifferentiation experiments on the antipodes of two different chiral probes. The new organic salt exhibited outstanding enantioselection performance with respect to these probes, thus opening the way to applications in the enantioselective electroanalysis of relevant bioactive molecules.
Collapse
Affiliation(s)
- Francesca Fontana
- Dipartimento di Ingegneria e Scienze Applicate, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Italy; (G.C.); (B.B.)
- CSGI Bergamo R.U., Viale Marconi 5, 24044 Dalmine, Italy
- Correspondence: (F.F.); (S.R.)
| | - Greta Carminati
- Dipartimento di Ingegneria e Scienze Applicate, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Italy; (G.C.); (B.B.)
| | - Benedetta Bertolotti
- Dipartimento di Ingegneria e Scienze Applicate, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Italy; (G.C.); (B.B.)
| | - Patrizia Romana Mussini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (P.R.M.); (S.A.); (S.G.)
| | - Serena Arnaboldi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (P.R.M.); (S.A.); (S.G.)
| | - Sara Grecchi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (P.R.M.); (S.A.); (S.G.)
| | - Roberto Cirilli
- Centro Nazionale per Il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma, Italy;
| | - Simona Rizzo
- CNR Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, Italy
- Correspondence: (F.F.); (S.R.)
| |
Collapse
|
19
|
Zullo V, Górecki M, Guazzelli L, Mezzetta A, Pescitelli G, Iuliano A. Exploiting isohexide scaffolds for the preparation of chiral ionic liquids tweezers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
21
|
Chiappe C, Rodriguez-Douton MJ, Mozzati MC, Prete D, Griesi A, Guazzelli L, Gemmi M, Caporali S, Calisi N, Pomelli CS, Rossella F. Fe-functionalized paramagnetic sporopollenin from pollen grains: one-pot synthesis using ionic liquids. Sci Rep 2020; 10:12005. [PMID: 32686728 PMCID: PMC7371869 DOI: 10.1038/s41598-020-68875-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/15/2020] [Indexed: 11/15/2022] Open
Abstract
The preparation of Fe-decorated sporopollenins was achieved using pollen grains and an ionic liquid as solvent and functionalizing agent. The integrity of the organic capsules was ascertained through scanning electron microscopy studies. The presence of Fe in the capsule was investigated using FT-IR, X-ray photoemission spectroscopy and energy-dispersive X-ray spectroscopy. Electron paramagnetic resonance and magnetization measurements allowed us to demonstrate the paramagnetic behavior of our Fe-functionalized sporopollenin. A few potential applications of pollen-based systems functionalized with magnetic metal ions via ionic liquids are discussed.
Collapse
Affiliation(s)
- C Chiappe
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - M J Rodriguez-Douton
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - M C Mozzati
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - D Prete
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56126, Pisa, Italy
| | - A Griesi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56127, Pisa, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - L Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - M Gemmi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56127, Pisa, Italy
| | - S Caporali
- Dipartimento di Ingegneria Industriale, Università di Firenze, Via di S. Marta 3, 50129, Firenze, Italy
- INSTM, Via Giusti 9, 50123, Firenze, Italy
| | - N Calisi
- Dipartimento di Ingegneria Industriale, Università di Firenze, Via di S. Marta 3, 50129, Firenze, Italy
- INSTM, Via Giusti 9, 50123, Firenze, Italy
| | - C S Pomelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - F Rossella
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56126, Pisa, Italy
| |
Collapse
|
22
|
Flieger J, Feder-Kubis J, Tatarczak-Michalewska M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques. Int J Mol Sci 2020; 21:E4253. [PMID: 32549300 PMCID: PMC7352568 DOI: 10.3390/ijms21124253] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Ionic liquids (ILs) are chemical compounds composed of ions with melting points below 100 °C exhibiting a design feature. ILs are commonly used as the so-called green solvents, reagents or highly efficient catalysts in varied chemical processes. The huge application potential of ionic liquids (IL) justifies the growing interest in these compounds. In the last decade, increasing attention has been devoted to the development of new methods in the synthesis of stable chiral ionic liquids (CILs) and their application in various separation techniques. The beginnings of the successful use of CILs to separate enantiomers date back to the 1990 s. Most chiral ILs are based on chiral cations or chiral anions. There is also a limited number of CILs possessing both a chiral cation and a chiral anion. Due to the high molecular diversity of both ions, of which at least one has a chiral center, we have the possibility to design a large variety of optically active structures, thus expanding the range of CIL applications. Research utilizing chiral ionic liquids only recently has become more popular. However, it is the area that still has great potential for future development. This review aimed to describe the diversity of structures, properties and examples of applications of chiral ionic liquids as new chiral solid materials and chiral components of the anisotropic environment, providing chiral recognition of enantiomeric analytes, which is useful in liquid chromatography, countercurrent chromatography and other various CIL-based extraction techniques including aqueous biphasic (ABS) extraction systems, solid-liquid two-phase systems, liquid-liquid extraction systems with hydrophilic CILs, liquid-liquid extraction systems with hydrophobic CILs, solid-phase extraction and induced-precipitation techniques developed in the recent years. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs highlighting them as affordable and environmentally friendly both chiral selectors and solvents.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Feder-Kubis
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | | |
Collapse
|
23
|
Wang Y, Jarošová R, Swain GM, Blanchard GJ. Characterizing the Magnitude and Structure-Dependence of Free Charge Density Gradients in Room-Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3038-3045. [PMID: 32148037 DOI: 10.1021/acs.langmuir.0c00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 μm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
González-Rivera J, Husanu E, Mero A, Ferrari C, Duce C, Tinè MR, D'Andrea F, Pomelli CS, Guazzelli L. Insights into microwave heating response and thermal decomposition behavior of deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112357] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Pomelli CS, D’Andrea F, Mezzetta A, Guazzelli L. Exploiting pollen and sporopollenin for the sustainable production of microstructures. NEW J CHEM 2020. [DOI: 10.1039/c9nj05082e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pollen grains can be easily processed in order to obtain versatile and sustainable microcapsules.
Collapse
Affiliation(s)
| | | | - Andrea Mezzetta
- Dipartimento di Farmacia – Università di Pisa
- 56125 Pisa
- Italy
| | | |
Collapse
|
26
|
Evaluation of the effect of the dicationic ionic liquid structure on the cycloaddition of CO2 to epoxides. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
1-Octyl-3-(3-(1-methylpyrrolidiniumyl)propyl)imidazolium Bis(trifluoromethane)sulfonimide. MOLBANK 2019. [DOI: 10.3390/m1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The title compound 1-octyl-3-(3-(1-methylpyrrolidiniumyl)propyl)imidazolium bis(trifluoromethane)sulfonimide was prepared in three steps. This asymmetrical dicationic ionic liquid (ADIL) is composed of two different positively charged head groups (1-octylimidazolium and methylpyrrolidinium cations), which are linked through a propyl alkyl chain and by two bis(trifluoromethane)sulfonimide anions. The final ADIL was obtained by a simple metathesis reaction of the corresponding dibromide ionic liquid, in turn prepared by alkylation of 3-(3-bromopropyl)-1-propylimidazolium bromide. The ADIL structure and those of its precursors were confirmed through NMR and infrared spectroscopy, and the thermal properties of all compounds were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Density, solubility, and viscosity were measured for the prepared compounds.
Collapse
|
28
|
Mezzetta A, Poderelli L, D'Andrea F, Pomelli CS, Chiappe C, Guazzelli L. Unexpected Intrinsic Lability of Thiol-Functionalized Carboxylate Imidazolium Ionic Liquids. Molecules 2019; 24:E3571. [PMID: 31623295 PMCID: PMC6804084 DOI: 10.3390/molecules24193571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
New thiol-functionalized carboxylate ionic liquids (ILs), varying both for the cation and for the anion structures, have been prepared as new potential redox switching systems by reacting either 3-mercapto propionic acid (3-MPA) or N-acetyl-cysteine (NAC) with commercially available methyl carbonate ILs. Different ratios of thiol/disulfide ILs were obtained depending both on the acid employed in the neutralization reaction and on the reaction conditions used. Surprisingly, the imidazolium ILs displayed limited thermal stability which resulted in the formation of an imidazole 2-thione and a new sulfide ionic liquid. Conversely, the formation of the imidazole 2-thione was not observed when phosphonium disulfide ILs were heated, thus confirming the involvement of the imidazolium ring in an unexpected side reaction. An insight into the mechanism of the decomposition has been provided by means of DFT calculations.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Poderelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | | | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| |
Collapse
|
29
|
Mezzetta A, Łuczak J, Woch J, Chiappe C, Nowicki J, Guazzelli L. Surface active fatty acid ILs: Influence of the hydrophobic tail and/or the imidazolium hydroxyl functionalization on aggregates formation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Di Pietro S, Bordoni V, Mezzetta A, Chiappe C, Signore G, Guazzelli L, Di Bussolo V. Remarkable Effect of [Li(G4)]TFSI Solvate Ionic Liquid (SIL) on the Regio- and Stereoselective Ring Opening of α-Gluco Carbasugar 1,2-Epoxides. Molecules 2019; 24:E2946. [PMID: 31416186 PMCID: PMC6720504 DOI: 10.3390/molecules24162946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Carba analogues of biologically relevant natural carbohydrates are promising structures for the development of future drugs endowed with enhanced hydrolytic stability. An open synthetic challenge in this field is the optimization of new methodologies for the stereo- and regioselective opening of α-gluco carbasugar 1,2-epoxides that allow for the preparation of pseudo mono- and disaccharides of great interest. Therefore, we investigated the effect of Lewis acids and solvate ionic liquids (SILs) on the epoxide ring opening of a model substrate. Of particular interest was the complete stereo- and regioselectivity, albeit limited to simple nucleophiles, toward the desired C(1) isomer that was observed using LiClO4. The results obtained with SILs were also remarkable. In particular, Li[NTf2]/tetraglyme ([Li(G4)]TFSI) was able to function as a Lewis acid and to direct the attack of the nucleophile preferentially at the pseudo anomeric position, even with a more complex and synthetically interesting nucleophile. The regioselectivity observed for LiClO4 and [Li(G4)]TFSI was tentatively ascribed to the formation of a bidentate chelating system, which changed the conformational equilibrium and ultimately permitted a trans-diaxial attack on C(1). To the best of our knowledge, we report here the first case in which SILs were successfully employed in a ring-opening process of epoxides.
Collapse
Affiliation(s)
| | - Vittorio Bordoni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Present address: Max Planck Institute of Colloids and Interfaces, Am Mühlen- berg 1, 14476 Potsdam, Germany
| | - Andrea Mezzetta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, via F. Giovannini 13, San Giuliano Terme (PI), 56017 Pisa, Italy
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 3, 56124 Pisa, Italy.
| |
Collapse
|
31
|
Florio W, Becherini S, D'Andrea F, Lupetti A, Chiappe C, Guazzelli L. Comparative evaluation of antimicrobial activity of different types of ionic liquids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109907. [PMID: 31499958 DOI: 10.1016/j.msec.2019.109907] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
In order to identify most suitable ionic liquids (ILs) for potential applications in infection prevention and control, in the present study we comparatively evaluated the antimicrobial potency and hemolytic activity of 15 ILs, including 11 previously described and four newly synthesized ILs, using standard microbiological procedures against Gram-positive and Gram-negative bacteria. ILs showing the lowest minimum inhibitory concentration (MIC) were tested for their hemolytic activity. Three ILs characterized by low MIC values and low hemolytic activity, namely 1-methyl-3-dodecylimidazolium bromide, 1-dodecyl-1-methylpyrrolidinium bromide, and 1-dodecyl-1-methylpiperidinium bromide were further investigated to determine their minimum bactericidal concentration (MBC), and their ability to inhibit biofilm formation by Staphylococcus aureus or Pseudomonas aeruginosa. Killing kinetics results revealed that both Gram-positive and Gram-negative bacteria are rapidly killed after exposure to MBC of the selected ILs. Furthermore, the selected ILs efficiently inhibited biofilm formation by S. aureus or P. aeruginosa. To our knowledge, this is the first systematic study investigating the antimicrobial potential of different types of ionic liquids using standard microbiological procedures. In the overall, the selected ILs showed low hemolytic and powerful antimicrobial activity, and efficient inhibition of biofilm formation, especially against S. aureus, suggesting their possible application as anti-biofilm agents.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | | | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy.
| | - Cinzia Chiappe
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| | | |
Collapse
|
32
|
Mezzetta A, Becherini S, Pretti C, Monni G, Casu V, Chiappe C, Guazzelli L. Insights into the levulinate-based ionic liquid class: synthesis, cellulose dissolution evaluation and ecotoxicity assessment. NEW J CHEM 2019. [DOI: 10.1039/c9nj03239h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New levulinate ionic liquids (ILs) were able to dissolve cellulose in high amounts. The ecotoxicity profiles of these new ILs were also assessed.
Collapse
Affiliation(s)
| | | | - Carlo Pretti
- Department of Veterinary Sciences
- University of Pisa
- Via Livornese lato monte
- San Piero a Grado
- PI 56122
| | - Gianfranca Monni
- Interuniversity Consortium of Marine Biology and Applied Ecology “G. Bacci”
- Leghorn
- Italy
| | - Valentina Casu
- Interuniversity Consortium of Marine Biology and Applied Ecology “G. Bacci”
- Leghorn
- Italy
| | | | | |
Collapse
|
33
|
Becherini S, Mezzetta A, Chiappe C, Guazzelli L. Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose. NEW J CHEM 2019. [DOI: 10.1039/c9nj00191c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Levulinate protic ionic liquids allow for the dissolution and the levulination of their parent polysaccharide.
Collapse
|
34
|
Guglielmero L, Guazzelli L, Toncelli A, Chiappe C, Tredicucci A, Pomelli CS. An insight into the intermolecular vibrational modes of dicationic ionic liquids through far-infrared spectroscopy and DFT calculations. RSC Adv 2019; 9:30269-30276. [PMID: 35530250 PMCID: PMC9072084 DOI: 10.1039/c9ra05735h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Dicationic ionic liquids (DILs) are a subclass of the ionic liquid (IL) family and are characterized by two cationic head groups linked by means of a spacer. While DILs are increasingly attracting interest due to their peculiar physico-chemical properties, there is still a lack of understanding of their intermolecular interactions. Herein, we report our investigations on the intermolecular vibrational modes of two bromide DILs and of a bistriflimide DIL. The minimal possible neutral cluster of ions was studied as a simplified model of these systems and was optimized at the DFT level. Normal modes of two sandwich-like conformers were then calculated using the harmonic approximation with analytical computation of the second derivatives of molecular energy with respect to the atomic coordinates. The calculated spectra were compared to far-infrared experimental spectra and two groups of peaks over three, for the two bromide DILs, and three over five, for the Tf2N− DIL, were described by the proposed neutral cluster model. Therefore, this model represents a reliable and computationally affordable model for the exploration of the intermolecular interactions of this kind of system. The minimal cluster of ions represents a reliable and computationally affordable model for the exploration of the intermolecular interactions of dicationic ionic liquids.![]()
Collapse
Affiliation(s)
| | | | - Alessandra Toncelli
- Dipartimento di Fisica “E. Fermi” and Istituto Nanoscienze CNR
- Università di Pisa
- 56127 Pisa
- Italy
| | | | - Alessandro Tredicucci
- Dipartimento di Fisica “E. Fermi” and Istituto Nanoscienze CNR
- Università di Pisa
- 56127 Pisa
- Italy
- Laboratorio NEST
| | | |
Collapse
|
35
|
Wu D, Pan F, Fan GC, Zhu Z, Gao L, Tao Y, Kong Y. Efficient enantiorecognition of amino acids under a stimuli-responsive system: synthesis, characterization and application of electroactive rotaxane. Analyst 2019; 144:6415-6421. [DOI: 10.1039/c9an01692a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An electroactive chiral rotaxane, consisting of a polymeric chiral ionic liquid as the flexible axle and 18-crown-6 as the wheel, is synthesized for efficient enantiorecognition of amino acids.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Ziming Zhu
- College of Life Science and Technology
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|