1
|
Al-Qwairi FO, Shaheen Shah S, Shabi AH, Khan A, Aziz MA. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem Asian J 2024; 19:e202400314. [PMID: 39014972 DOI: 10.1002/asia.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.
Collapse
Affiliation(s)
- Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS MEASUREMENT SCIENCE AU 2022; 2:495-516. [PMID: 36785772 PMCID: PMC9886004 DOI: 10.1021/acsmeasuresciau.2c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bioelectrical impedance analysis and bioelectrical impedance spectroscopy (BIA/BIS) of tissues reveal important information on molecular composition and physical structure that is useful in diagnostics and prognostics. The heterogeneity in structural elements of cells, tissues, organs, and the whole human body, the variability in molecular composition arising from the dynamics of biochemical reactions, and the contributions of inherently electroresponsive components, such as ions, proteins, and polarized membranes, have rendered bioimpedance challenging to interpret but also a powerful evaluation and monitoring technique in biomedicine. BIA/BIS has thus become the basis for a wide range of diagnostic and monitoring systems such as plethysmography and tomography. The use of BIA/BIS arises from (i) being a noninvasive and safe measurement modality, (ii) its ease of miniaturization, and (iii) multiple technological formats for its biomedical implementation. Considering the dependency of the absolute and relative values of impedance on frequency, and the uniqueness of the origins of the α-, β-, δ-, and γ-dispersions, this targeted review discusses biological events and underlying principles that are employed to analyze the impedance data based on the frequency range. The emergence of BIA/BIS in wearable devices and its relevance to the Internet of Medical Things (IoMT) are introduced and discussed.
Collapse
Affiliation(s)
- Sara Abasi
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Cell
Culture Media Services, Cytiva, 100 Results Way, Marlborough, Massachusetts 01752, United States
| | - John R. Aggas
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Test
Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, Indiana 46256, United
States
| | - Guillermo G. Garayar-Leyva
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
| | - Brandon K. Walther
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Anthony Guiseppi-Elie
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- ABTECH Scientific,
Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, United
States
- . Tel.: +1(804)347.9363.
Fax: +1(804)347.9363
| |
Collapse
|
3
|
Mancino C, Hendrickson T, Whitney LV, Paradiso F, Abasi S, Tasciotti E, Taraballi F, Guiseppi-Elie A. Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102567. [PMID: 35595015 DOI: 10.1016/j.nano.2022.102567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Myocardial infarction remains the leading cause of death in the western world. Since the heart has limited regenerative capabilities, several cardiac tissue engineering (CTE) strategies have been proposed to repair the damaged myocardium. A novel electrospun construct with aligned and electroconductive fibers combining gelatin, poly(lactic-co-glycolic) acid and polypyrrole that may serve as a cardiac patch is presented. Constructs were characterized for fiber alignment, surface wettability, shrinkage and swelling behavior, porosity, degradation rate, mechanical properties, and electrical properties. Cell-biomaterial interactions were studied using three different types of cells, Neonatal Rat Ventricular Myocytes (NRVM), human lung fibroblasts (MRC-5) and induced pluripotent stem cells (iPSCs). All cell types showed good viability and unique organization on construct surfaces depending on their phenotype. Finally, we assessed the maturation status of NRVMs after 14 days by confocal images and qRT-PCR. Overall evidence supports a proof-of-concept that this novel biomaterial construct could be a good candidate patch for CTE applications.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.
| | - Troy Hendrickson
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Molecular Medicine, Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA.
| | - Lauren V Whitney
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea, UK.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, Houston, TX, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| |
Collapse
|
4
|
Oldroyd P, Malliaras GG. Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomater 2022; 139:65-81. [PMID: 34020055 DOI: 10.1016/j.actbio.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Implantable electrodes that can reliably measure brain activity and deliver an electrical stimulus to a target tissue are increasingly employed to treat various neurological diseases and neuropsychiatric disorders. Flexible thin-film electrodes have gained attention over the past few years to minimise invasiveness and damage upon implantation. Research has previously focused on optimising the electrode's electrical and mechanical properties; however, their chronic stability must be validated to translate electrodes from a research to a clinical application. Neurostimulation electrodes, which actively inject charge, have yet to reliably demonstrate continuous functionality for ten years or more in vivo, the accepted metric for clinical viability. Long-term stability can only be achieved if the focus switches to investigating how and why such devices fail. Unfortunately, there is a field-wide reluctance to investigate device stability and failures, which hinders device optimisation. This review surveys thin-film electrode designs with a focus on adhesion between electrode layers and the interactions with the surrounding environment. A comprehensive summary of the abiotic failure modes faced by such electrodes is presented, and to encourage investigation, systematic methods for analysing their origin are recommended. Finally, approaches to reducing the likelihood of device failure are offered. STATEMENT OF SIGNIFICANCE: Neural electrodes that can deliver an electrical stimulus to a target tissue are widely used to treat various neurological diseases. Essential to the function of these electrodes is the ability to safely stimulate the target tissue for extended periods (> 10 years); however, this has not yet been clinically achieved. The key to achieving long-term stability is an increased understanding of electrode interactions with the surrounding tissue and subsequent systematic analysis of their failure modes. This review highlights the need for a change in the approach to investigating electrode failure, and in doing so summarizes the common ways in which neural electrodes fail, methods for identifying them and approaches to preventing them.
Collapse
|
5
|
Gulino M, Santos SD, Pêgo AP. Biocompatibility of Platinum Nanoparticles in Brain ex vivo Models in Physiological and Pathological Conditions. Front Neurosci 2022; 15:787518. [PMID: 34975386 PMCID: PMC8714788 DOI: 10.3389/fnins.2021.787518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
Platinum nanoparticles (PtNPs) have unique physico-chemical properties that led to their use in many branches of medicine. Recently, PtNPs gathered growing interest as delivery vectors for drugs, biosensors and as surface coating on chronically implanted biomedical devices for improving electrochemical properties. However, there are contradictory statements about their biocompatibility and impact on target organs such as the brain tissue, where these NPs are finding many applications. Furthermore, many of the reported studies are conducted in homeostasis conditions and, consequently, neglect the impact of the pathologic conditions on the tissue response. To expand our knowledge on the effects of PtNPs on neuronal and glial cells, we investigated the acute effects of monodisperse sodium citrate-coated PtNPs on rat organotypic hippocampal cultures in physiological or neuronal excitotoxic conditions induced by kainic acid (KA). The cellular responses of the PtNPs were evaluated through cytotoxic assays and confocal microscopy analysis. To mimic a pathologic scenario, 7-day organotypic hippocampal cultures were exposed to KA for 24 h. Subsequently, PtNPs were added to each slice. We show that incubation of the slices with PtNPs for 24 h, does not severely impact cell viability in normal conditions, with no significant differences when comparing the dentate gyrus (DG), as well as CA3 and CA1 pyramidal cell layers. Such effects are not exacerbated in KA-treated slices, where the presence of PtNPs does not cause additional neuronal propidium iodide (PI) uptake in CA3 and CA1 pyramidal cell layers. However, PtNPs cause microglial cell activation and morphological alterations in CA3 and DG regions indicating the establishment of an inflammatory reaction. Morphological analysis revealed that microglia acquire activated ameboid morphology with loss of ramifications, as a result of their response to PtNPs contact. Surprisingly, this effect is not increased in pathological conditions. Taken together, these results show that PtNPs cause microglia alterations in short-term studies. Additionally, there is no worsening of the tissue response in a neuropathological induced scenario. This work highlights the need of further research to allow for the safe use of PtNPs. Also, it supports the demand of the development of novel and more biocompatible NPs to be applied in the brain.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Sofia Duque Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Aggas JR, Abasi S, Phipps JF, Podstawczyk DA, Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics. Biosens Bioelectron 2020; 168:112568. [DOI: 10.1016/j.bios.2020.112568] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
7
|
Abasi S, Bhat A, Guiseppi‐Elie A. Electrode Selection for Electrostimulation and TEER Using ECSARA. ELECTROANAL 2020. [DOI: 10.1002/elan.202060313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sara Abasi
- Center for Bioelectronics Biosensors and Biochips (C3B®) Department of Biomedical Engineering and Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA
| | - Ankita Bhat
- Center for Bioelectronics Biosensors and Biochips (C3B®) Department of Biomedical Engineering and Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA
| | - Anthony Guiseppi‐Elie
- Center for Bioelectronics Biosensors and Biochips (C3B®) Department of Biomedical Engineering and Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute 6670 Bertner Ave. Houston TX 77030 USA
- Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843 USA
- ABTECH Scientific, Inc. Biotechnology Research Park 800 East Leigh Street Richmond VA 23219 USA
| |
Collapse
|
8
|
Strategies for improving antimicrobial properties of stainless steel. MATERIALS 2020; 13:ma13132944. [PMID: 32630130 PMCID: PMC7372344 DOI: 10.3390/ma13132944] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
In this review, strategies for improving the antimicrobial properties of stainless steel (SS) are presented. The main focus given is to present current strategies for surface modification of SS, which alter surface characteristics in terms of surface chemistry, topography and wettability/surface charge, without influencing the bulk attributes of the material. As SS exhibits excellent mechanical properties and satisfactory biocompatibility, it is one of the most frequently used materials in medical applications. It is widely used as a material for fabricating orthopedic prosthesis, cardiovascular stents/valves and recently also for three dimensional (3D) printing of custom made implants. Despite its good mechanical properties, SS lacks desired biofunctionality, which makes it prone to bacterial adhesion and biofilm formation. Due to increased resistance of bacteria to antibiotics, it is imperative to achieve antibacterial properties of implants. Thus, many different approaches were proposed and are discussed herein. Emphasis is given on novel approaches based on treatment with highly reactive plasma, which may alter SS topography, chemistry and wettability under appropriate treatment conditions. This review aims to present and critically discuss different approaches and propose novel possibilities for surface modification of SS by using highly reactive gaseous plasma in order to obtain a desired biological response.
Collapse
|
9
|
Tribological Characterization of Ni-Free Duplex Stainless Steel Alloys Using the Taguchi Methodology. METALS 2020. [DOI: 10.3390/met10030339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Duplex stainless steels (DSSs) exhibit excellent corrosion resistance and are being used in a variety of industrial applications. Reducing/eliminating the amount of nickel in such alloys will contribute significantly to its economic viability. Moreover, a well-established wear behavior for these alloys is also an essential development in most of their applications. Hence, in this work, the Taguchi technique was effectively implemented to investigate the effect of operating factors such as sliding speed and applied load on the wear behavior of different compositions of nickel-free DSSs. It was observed that the composition had a higher contribution of 33.66% to the wear rate (WR) and the contribution of the sliding speed to the coefficient of friction (COF) was found to be 68.17%. With a good agreement, a regression model was also developed to predict the WR and COF within a certain range of factors. Wear tests have also shown that the developed nickel-free DSS is a promising candidate in terms of wear resistance as compared to austenitic stainless steels (ASS).
Collapse
|
10
|
Bhat A, Amanor-Boadu JM, Guiseppi-Elie A. Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor. ACS Sens 2020; 5:500-509. [PMID: 31948224 DOI: 10.1021/acssensors.9b02336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pH-responsive, poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based hydrogel has been fashioned into an impedimetric pH sensor for the continual measurement and monitoring of tissue acidosis that can arise due to hemorrhaging trauma. Four hydrogel systems molecularly engineered to influence water distribution and ionic abundance were studied: a cationogenic primary amine, N-(2-aminoethyl) methacrylate (AEMA), a tertiary amine moiety, N,N-(2-dimethylamino)ethyl methacrylate (DMAEMA), and a combined AEMA-DMAEMA formulation. Electrochemical impedance spectroscopy (EIS) of hydrogel discs held between platinized Type 304 stainless steel mesh electrodes in pH-adjusted 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid sodium salt (HEPES) buffer and equivalent circuit modeling indicated that the AEMA hydrogel had the highest sensitivity containing the relevant pathophysiological range (pH 7.0-8.0). Thus, the AEMA formulation was studied at 0, 1, 3, 4.4, and 30 mol % AEMA. The 1 mol % AEMA was found to significantly (p < 0.05) discern nominal pH (7.35, 7.40, 7.45). The Taguchi Design of Experiments approach was employed and confirmed composition as a factor and 1 mol % AEMA to be the most robust. DMAEMA (0, 4.4, 14, 30 mol %) and AEMA-DMAEMA (0, 4.4, 14, 30 mol %) allowed the use of the one-factor Response Surface Methodology optimizer to confirm the AEMA 1 mol % system to be most robust, sensitive, and possessing optimal sensitivity in the pathophysiological pH sensing range (7.35-7.45) for hemorrhagic trauma. This composition was fashioned as a responsive membrane on a microlithographically fabricated interdigitated microsensor electrode and the sensitivity was determined using R(QR)(QR) analysis. Water distribution within the AEMA (0, 1, 4.4, 30 mol %), determined by gravimetric analysis and differential scanning calorimetry, revealed a strong anticorrelation between nonfreezable bound water and pH sensitivity (-0.82) and was in good agreement with the total hydration (-0.70). Nonfreezable bound water was found to be the most strongly correlated factor that governs the pH response of hydrogels.
Collapse
Affiliation(s)
- Ankita Bhat
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Judy M. Amanor-Boadu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, United States
| |
Collapse
|