1
|
Kanjana N, Maiaugree W, Laokul P, Chaiya I, Lunnoo T, Wongjom P, Infahsaeng Y, Thongdang B, Amornkitbamrung V. Fly ash boosted electrocatalytic properties of PEDOT:PSS counter electrodes for the triiodide reduction in dye-sensitized solar cells. Sci Rep 2023; 13:6012. [PMID: 37045928 PMCID: PMC10097718 DOI: 10.1038/s41598-023-33020-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Fly ash solid waste from a power plant was applied in a solar cell application for the first time. A doctor blade was used to coat FTO-glass with a composite film of mixed fly ash and PEDOT:PSS (FP). XRD, FTIR, SEM, EDX, and BET analyses were used to elucidate the crystal structure, morphology, and functional groups of fly ash in the current research. A significantly high efficiency solar cell was fabricated utilizing fly ash. CV, Tafel, and EIS analyses indicated a decrease in charge transfer resistance and an increased catalytic activity in the counter electrodes. The performance of DSSCs made from FP counter electrodes varied depending on the percentage of fly ash particles present. Fly ash mixed with PEDOT:PSS in a concentration ratio of 2:5 g/mL showed a high efficiency of 4.23%, which is comparable to Pt DSSC's (4.84%). Moreover, FP-2:5 presented a more highly efficient electrode than counter electrodes made from PEDOT:PSS mixed with MoO (3.08%) and CoO (3.65%). This suitability of this low-cost CE material for use in DSSCs has been established.
Collapse
Affiliation(s)
- Nattakan Kanjana
- Thammasat University Research Unit in Energy Innovations and Modern Physics (EIMP), Thammasat University, Pathum Thani, 12120, Thailand
| | - Wasan Maiaugree
- Thammasat University Research Unit in Energy Innovations and Modern Physics (EIMP), Thammasat University, Pathum Thani, 12120, Thailand.
- Division of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Paveena Laokul
- Department of Physics, Faculty of Science, Mahasarakham University, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Inthira Chaiya
- Department of Mathematics, Faculty of Science, Mahasarakham University, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Thodsaphon Lunnoo
- Thammasat University Research Unit in Energy Innovations and Modern Physics (EIMP), Thammasat University, Pathum Thani, 12120, Thailand
- Division of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Poramed Wongjom
- Division of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Yingyot Infahsaeng
- Division of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Quantum Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Bunjong Thongdang
- Electricity Generating Authority of Thailand, Nonthaburi, 11130, Thailand
| | - Vittaya Amornkitbamrung
- Thailand Center of Excellence in Physics (ThEP center), Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Mirzaei M, Gholivand MB. Core-shell structured NiSe@MoS nanosheets anchored on multi-walled carbon nanotubes-based counter electrode for dye-sensitized solar cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Novel heterologous binary redox mediator based on an ionic liquid and cobalt complex for efficient organic-solvent-free dye-sensitized solar cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. J Colloid Interface Sci 2022; 625:800-816. [PMID: 35772208 DOI: 10.1016/j.jcis.2022.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
The design and exploration of high-efficiency and low-cost electrode catalysts are of great significance to the development of novel energy conversion technologies. In this work, metal and nonmetal heteroatoms co-doped biphasic tungsten-based chalcogenide heterostructured catalyst (Co-WS2/P-WO2.9) with rich defects is successfully synthesized by a vulcanization technique. The electrocatalytic performance of WS2/WO3 in the hydrogen evolution reaction (HER) and triiodide reduction reaction is significantly enhanced by modifying and optimizing its electronic structure through a defect engineering strategy. As an electrocatalyst for HER, the optimized Co-WS2/P-WO2.9 exhibits a low overpotential at 10 mA cm-2 of 146 and 120 mV with small Tafel slopes of 86 and 74 mV dec-1 in alkaline and acidic electrolyte, respectively. In addition, a Co-WS2/P-WO2.9 assembled solar cell yields a short circuit current density of 15.85 mA cm-2, an open-circuit voltage of 0.74 V, a fill factor of 0.66, and a competitive power conversion efficiency (7.83%), which is comparable or higher than conventional Pt-based solar cell (16.02 mA cm-2, 0.70 V, 0.63, 7.14%). The formation of a heterostructure in Co-WS2/P-WO2.9 leads to the presence of a built-in electric field in the interfacial region between Co-WS2 and P-WO2.9, which leads to an increased open-circuit voltage from 0.70 V for Pt to 0.74 V for Co-WS2/P-WO2.9. This work can provide a technical support for developing high-performance heterostructured catalysts, which open up a way for improving catalytic performance of heterostructured catalysts in the field of electrocatalysis.
Collapse
|
5
|
Ni and Fe nanoparticles, alloy and Ni/Fe-Nx coordination co-boost the catalytic activity of the carbon-based catalyst for triiodide reduction and hydrogen evolution reaction. J Colloid Interface Sci 2022; 615:501-516. [DOI: 10.1016/j.jcis.2022.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/23/2022]
|
6
|
Deng Y, Yun S, Dang J, Zhang Y, Dang C, Wang Y, Liu Z, Gao Z. A multi-dimensional hierarchical strategy building melamine sponge-derived tetrapod carbon supported cobalt-nickel tellurides 0D/3D nanohybrids for boosting hydrogen evolution and triiodide reduction reaction. J Colloid Interface Sci 2022; 624:650-669. [DOI: 10.1016/j.jcis.2022.05.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023]
|
7
|
Kusumawati Y, Hutama AS, Wellia DV, Subagyo R. Natural resources for dye-sensitized solar cells. Heliyon 2021; 7:e08436. [PMID: 34917788 PMCID: PMC8668837 DOI: 10.1016/j.heliyon.2021.e08436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
While the development of dye-sensitized solar cells (DSSCs) has been ongoing for more than 30 years, the currently obtained efficiency is unsatisfactory. However, the study of DSSC development has produced a fundamental understanding of cell performance and inspired other devices, such as perovskite cell solar cells. DSSCs consist of a dye-sensitized photoanode, a counter electrode, and a redox couple in the electrolyte system. Each of the components has an important role and cofunctions with each other to obtain a high power conversion efficiency. Various modifications to each DSSC component have been applied to improve their performance. Additionally, to generate improvements, the effort to reduce production costs has been crucial. The utilization of natural sources for DSSC components is a possible solution to this issue. The utilization of natural resources also aims to increase the value of the natural resource itself. In this review, the applications of various natural sources for DSSC components are described, as well as the modification efforts that have been made to enhance their performance. The discussion covers the utilization of natural dye for sensitizer dyes in liquid DSSC applications: (1) utilization of biopolymers for quasi-solid DSSC electrolytes, (2) green synthesis methods for photoanode semiconductors, and (3) development of natural carbon counter electrodes. The detailed factors that influence improvements in cell performance are also addressed.
Collapse
Affiliation(s)
- Yuly Kusumawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| | - Aulia S. Hutama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Jalan Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Diana V. Wellia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 24516, Indonesia
| | - Riki Subagyo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| |
Collapse
|
8
|
Preparation of Co9S8 nanostructure with double comb copolymer derived mesoporous carbon for solar energy conversion catalyst. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Zhang Y, Yun S, Sun M, Wang X, Zhang L, Dang J, Yang C, Yang J, Dang C, Yuan S. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media. J Colloid Interface Sci 2021; 604:441-457. [PMID: 34273781 DOI: 10.1016/j.jcis.2021.06.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
Developing electrocatalysts with excellent catalytic performance and superior durability for hydrogen evolution reaction (HER) remains a challenge. Herein, metal-nitrogen sites (M-Nx, M = Ni and Cu) are successfully implanted into zeolitic imidazolate zinc framework (ZIF-8)-derived nitrogen-doped porous carbon (ZIF/NC) to prepare Ni-ZIF/NC and Cu-ZIF/NC electrocatalysts for the HER. These M-Nx active sites significantly enhanced the electrocatalytic activities of Ni-ZIF/NC and Cu-ZIF/NC. Metal Ni acted as a catalyst for catalysis of Ni-ZIF/NC to form carbon nanotubes-like structures, which provided convenient ion transmission pathways. Owing to its special morphology and an increased number of defects, Ni-ZIF/NC displayed superior electrocatalytic activity in the HER compared to those of Cu-ZIF/NC and ZIF/NC. In an alkaline environment, Ni-ZIF/NC exhibited an overpotential at the current density of 10 mA cm-2 (η10) of 163.0 mV and Tafel slope of 85.0 mV dec-1, demonstrating an electrocatalytic property equivalent to that of Pt/C. In an acidic environment, Ni-ZIF/NC yielded a η10 of 177.4 mV and Tafel slope of 83.9 mV dec-1, which were comparable to those of 20 wt.% Pt/C. Moreover, Ni-ZIF/NC and Cu-ZIF/NC also exhibited superior stabilities in alkaline environments. This work offers a valuable strategy for controlling the morphology and implanting M-Nx active sites into carbon for designing novel catalysts for use in alternative new energy applications.
Collapse
Affiliation(s)
- Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xi Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lishan Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiaoe Dang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Chao Yang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jingjing Yang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Changwei Dang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Shuangxi Yuan
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
10
|
Zingwe N, Meyer E, Mbese J. Evaluating the efficacy of binary palladium alloy PdO-Pd for use as an electrocatalyst in DSSC counter electrodes. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Yun S, Shi J, Si Y, Sun M, Zhang Y, Arshad A, Yang C. Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution. J Colloid Interface Sci 2021; 601:12-29. [PMID: 34052724 DOI: 10.1016/j.jcis.2021.05.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Developing highly-efficient multifunctional electrocatalysts for energy conversion devices is of great importance. A sequence of nano-sized bimetal (Al, Cr, Fe) niobium oxide nanoparticles anchored on aloe peel-derived porous carbon skeleton hybrids (AN/APPC, CN/APPC, and FN/APPC) are successfully prepared via co-precipitation avenue and used as electrocatalysts for photovoltaics and alkaline hydrogen evolution reaction. Benefiting from the synergies between nano-sized metal niobium oxides and highly conductive porous carbon skeleton, these robust polycomponent hybrid electrocatalysts exhibit superior catalytic performances for accelerating the triiodide reduction and hydrogen evolution reaction. The solar cell with AN/APPC electrocatalyst achieves an outstanding device efficiency of 7.31%, superior to that with Pt (6.84%), and the AN/APPC electrocatalyst exhibit an overpotential (131.6 mV) when the current density is 10 mA cm-2 and Tafel slope (54 mV dec-1) in 1 M KOH for hydrogen evolution reaction. The AN/APPC electrocatalysts illustrate remarkable electrochemical durability in both I3-/I- electrolyte and alkaline media. Furthermore, the catalytic mechanism was clarified both from the electronic structure and work function through first-principle density functional theory (DFT) calculations. This work opens a new avenue for electrocatalysis field via using nano-sized porous bio-carbon skeleton loaded with niobium-based binary metal.
Collapse
Affiliation(s)
- Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jing Shi
- Department of Physics, Xi'an Jiaotong University City College, Xi'an, Shaanxi 710018, China
| | - Yiming Si
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Chao Yang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
12
|
Li J, Yun S, Han F, Si Y, Arshad A, Zhang Y, Chidambaram B, Zafar N, Qiao X. Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J Colloid Interface Sci 2020; 578:184-194. [PMID: 32526522 DOI: 10.1016/j.jcis.2020.04.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
Manganese tungstate (MnWO4), zinc tungstate (ZnWO4), and copper tungstate (CuWO4) embedded biomass-derived carbon (MWO-C, ZWO-C, CWO-C) was synthesized by hydrothermal treatment and investigated as counter electrode (CE) catalysts to test electrochemical activity. Biomass-derived carbon was used as the shape controlling agent, which changed the morphology of MWO from spherical to spindle-like. Owing to the synergistic effect between tungsten-based bimetal oxides and biomass-derived carbon, the MWO-C, ZWO-C, and CWO-C catalysts exhibited enhanced electrochemical performance in dye-sensitized solar cells (DSSCs) system. The MWO-C, ZWO-C and CWO-C catalysts in DSSCs showed outstanding power conversion efficiency (PCE) of 7.33%, 7.61%, and 6.52%, respectively, as compared with 7.04% for Pt based devices. Biomass-derived carbon improves the catalytic properties of tungsten-based nanohybrids. The results showed that biomass-derived carbon-enhanced inorganic compound as CE catalysts are promising alternatives to Pt-based CE catalysts for energy conversion devices.
Collapse
Affiliation(s)
- Jingwen Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yiming Si
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Brundha Chidambaram
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Nosheen Zafar
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinying Qiao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
13
|
Aftabuzzaman M, Lu C, Kim HK. Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. NANOSCALE 2020; 12:17590-17648. [PMID: 32820785 DOI: 10.1039/d0nr04112b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) favor minimal environmental impact and low processing costs, factors that have prompted intensive research and development. In both cases, rare, expensive, and less stable metals (Pt and Au) are used as counter/back electrodes; this design increases the overall fabrication cost of commercial DSSC and PSC devices. Therefore, significant attempts have been made to identify possible substitutes. Carbon-based materials seem to be a favorable candidate for DSSCs and PSCs due to their excellent catalytic ability, easy scalability, low cost, and long-term stability. However, different carbon materials, including carbon black, graphene, and carbon nanotubes, among others, have distinct properties, which have a significant role in device efficiency. Herein, we summarize the recent advancement of carbon-based materials and review their synthetic approaches, structure-function relationship, surface modification, heteroatoms/metal/metal oxide incorporation, fabrication process of counter/back electrodes, and their effects on photovoltaic efficiency, based on previous studies. Finally, we highlight the advantages, disadvantages, and design criteria of carbon materials and fabrication challenges that inspire researchers to find low cost, efficient and stable counter/back electrodes for DSSCs and PSCs.
Collapse
Affiliation(s)
- M Aftabuzzaman
- Global GET-Future Lab & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea.
| | | | | |
Collapse
|
14
|
Zhang X, Wang T, Li X, Wu D, Chen W. Nitrogen-doped carbon encapsulating γ-MoC/Ni nanoparticles as efficient counter electrodes for dye-sensitized solar cells. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1817413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Ting Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Xiaohong Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Di Wu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
15
|
Chen J, Yun S, Shi J, Wang Z, Abbas Y, Wang K, Han F, Jia B, Xu H, Xing T, Li B. Role of biomass-derived carbon-based composite accelerants in enhanced anaerobic digestion: Focusing on biogas yield, fertilizer utilization, and density functional theory calculations. BIORESOURCE TECHNOLOGY 2020; 307:123204. [PMID: 32224426 DOI: 10.1016/j.biortech.2020.123204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The performance of anaerobic digestion (AD) can be improved by the addition of accelerants. Three types of biomass-derived carbon-based composites (Co/C, CoO/C, and Co3O4/C) were used as accelerants to investigate the effect on AD systems in this work. These accelerants significantly improved the cumulative biogas yield (576-585 mL/g VS), and the total chemical oxygen demand degradation rate (68.48-71.11%) compared to the reference group (435.8 mL/g VS, 50.74%). The digestates with accelerants exhibited exceptional stability (59.24-63.67%) and superior fertilizer utilization (3.50-4.55%). In addition, first-principle density functional theory (DFT) calculations were conducted to provide the theoretical basis for the direct interspecies electron transfer (DIET), and a general strategy was proposed to help understand the enhanced methanogenesis pathway induced by the biomass-derived carbon-based composites. These important findings provide a novel avenue for the development of composite accelerants for AD systems.
Collapse
Affiliation(s)
- Jiageng Chen
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jing Shi
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Ziqi Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yasir Abbas
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bo Jia
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Hongfei Xu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Tian Xing
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bingjie Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
16
|
Dao VD. Highly transparent Pt-TiO2 as an efficient catalyst for triiodide reduction of bifacial liquid-junction photovoltaic devices. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Kumar R, Sahajwalla V, Bhargava P. Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2-methyl-8-hydroxyquinolinol (Mq). NANOSCALE ADVANCES 2019; 1:3192-3199. [PMID: 36133623 PMCID: PMC9418135 DOI: 10.1039/c9na00206e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/27/2019] [Indexed: 06/16/2023]
Abstract
Dye sensitized solar cells (DSSCs) are low cost solar cells and their fabrication process is easy relative to silicon based solar cells. Platinum can be replaced with carbon materials as counter electrodes in DSSCs because of their good catalytic properties and low cost. A carbon material was produced by carbonization of an organic ligand (2 methyl 8-hydroxy quinolinol (Mq)) at high temperature in flowing argon gas. Polyvinylpyrrolidone (PVP) was used as a surfactant for making carbon slurry from carbon produced using Mq. For the fabrication of the counter electrode, a carbon coating was prepared by using the doctor blading technique and the carbon slurry was coated on the FTO substrate. DSSCs based on the carbon counter electrode exhibit a higher V oc of 0.75 V than that of the Pt counter electrode (0.69 V). DSSCs based on the carbon material showed a power conversion efficiency (PCE) of 4.25% and fill factor (FF) of 0.51 which are slightly lower than those of the platinum (Pt) based counter electrode which showed a PCE of 5.86% and FF of 0.68.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai India 400076
- Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Veena Sahajwalla
- Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Parag Bhargava
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai India 400076
| |
Collapse
|