1
|
Korotcenkov G, Tolstoy VP. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations-Part 2: Porous 2D Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:237. [PMID: 36677992 PMCID: PMC9867534 DOI: 10.3390/nano13020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This article discusses the features of the synthesis and application of porous two-dimensional nanomaterials in developing conductometric gas sensors based on metal oxides. It is concluded that using porous 2D nanomaterials and 3D structures based on them is a promising approach to improving the parameters of gas sensors, such as sensitivity and the rate of response. The limitations that may arise when using 2D structures in gas sensors intended for the sensor market are considered.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Valeri P. Tolstoy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| |
Collapse
|
2
|
Reddy Inta H, Koppisetti HVSRM, Ghosh S, Roy A, Mahalingam V. Ni
3
Se
4
Nanostructure as a Battery‐type Positive Electrode for Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202201041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Harish Reddy Inta
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Heramba V. S. R. M. Koppisetti
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Sourav Ghosh
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Avishek Roy
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
3
|
Aman S, Ansari MZ, Abdullah M, Abid AG, Bashir I, Un Nisa M, Manzoor S, Shawky AM, Znaidia S, Tahir Farid HM. Facile synthesis of CoCo2O4/rGO spinel nanoarray as a robust electrode for energy storage devices. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Kumar MR, Singh S, Mohammed MK. Improving The Performance of Lithium-ion Batteries Based on Be-doped Zigzag Stanene Nanoribbons: Ab-initio Study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Priya AK, Gnanasekaran L, Kumar PS, Jalil AA, Hoang TKA, Rajendran S, Soto-Moscoso M, Balakrishnan D. Recent trends and advancements in nanoporous membranes for water purification. CHEMOSPHERE 2022; 303:135205. [PMID: 35667502 DOI: 10.1016/j.chemosphere.2022.135205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
When it comes to electrocatalysis, the creation of nanodevices, the research of energy and the environment, and diagnostics, nanoporous materials are an asset. Nanoporous membranes, which can be used to filter water, have recently been the subject of new research and are summarized in this review. These membranes are used to remove salts and metallic ions from the water following an analysis of several nanoporous membrane types and production procedures. Demonstrations and discussions of these membrane systems are then conducted. Nanoporous membranes can be used to filter water, according to the conclusions of this study, which will help readers better grasp how they work. As a result, novel water purification nanoporous compounds that are easy to manufacture, inexpensive, and effective will be developed. Merits and demerits of nanoporous membrane for water treatment and its advancements in purification were discussed.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | | | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
6
|
Yesuraj J, Lee HO, Pandiyan MK, Jayavelu J, Bhagavathiachari M, Kim K. Bio-engineered hexagon-shaped Co3O4 nanoplates on deoxyribonucleic acid (DNA) scaffold: An efficient electrode material for an asymmetric supercapacitor and electrocatalysis application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Liu S, Kang L, Hu J, Jung E, Henzie J, Alowasheeir A, Zhang J, Miao L, Yamauchi Y, Jun SC. Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect-Induced Manipulation toward Flexible Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104507. [PMID: 34821033 DOI: 10.1002/smll.202104507] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Indexed: 05/20/2023]
Abstract
As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.
Collapse
Affiliation(s)
- Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jisong Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Euigeol Jung
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Joel Henzie
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ling Miao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
8
|
Facile synthesis of Pr-doped Co3O4 nanoflakes on the nickel-foam for high performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Zhang Q, Zhu J, Yang S, Chen L, Sun M, Yang X, Wang P, Li K, Zhao P. Co 2P decorated Co 3O 4 nanocomposites supported on carbon cloth with enhanced electrochemical performance for asymmetric supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00276k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective strategy is demonstrated to promote electrochemical performance by the combination of Co3O4 with Co2P to form a composite electrode.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Jie Zhu
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Sudong Yang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Maosong Sun
- Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning 530004, China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Peng Zhao
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| |
Collapse
|
10
|
Wang Y, Zhang Y, Du C, Chen J, Tian Z, Xie M, Wan L. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors. Dalton Trans 2021; 50:17181-17193. [PMID: 34782904 DOI: 10.1039/d1dt03196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal phosphide electrodes, particularly those with unique morphologies and micro-/nanostructures, have demonstrated desirable capabilities for hybrid supercapacitor applications by virtue of their superior electrical conductivity and high electrochemical activity. Here, three-dimensional hierarchical CoFeP@nickel-manganese sulfide nanoarrays were in situ constructed on a flexible carbon cloth via a hydrothermal method, a phosphorization process, followed by an electrodeposition approach. In this smart nanoarchitecture, CoFeP nanorods grown on carbon cloth act as the conductive core for rapid electron transfer, while the nickel-manganese sulfide nanosheets decorated on the surface of CoFeP serve as the shell for efficient ion diffusion, forming a stable core-shell heterostructure with enhanced electrical conductivity. Benefiting from the synergy of the two components and the generation of a heterointerface with a modified electronic structure, The CoFeP@nickel-manganese sulfide electrodes deliver a high capacity of 260.7 mA h g-1 at 1 A g-1, excellent rate capability, and good cycling stability. More importantly, an aqueous hybrid supercapacitor based on CoFeP@nickel-manganese sulfide as a positive electrode and a lotus pollen-derived hierarchical porous carbon as a negative electrode is constructed to display a maximum energy density of 60.1 W h kg-1 at 371.8 W kg-1 and a good cycling stability of 85.7% capacitance retention after 10 000 cycles.
Collapse
Affiliation(s)
- Yameng Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhengfang Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Liu Wan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
11
|
P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Yu H, Sridhar D, Omanovic S. Ru
x
Bi
1‐x
‐oxide as an electrode material for pseudocapacitors. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Yu
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| | - Deepak Sridhar
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| | - Sasha Omanovic
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| |
Collapse
|
13
|
Feng G, Yang Y, Zeng J, Zhu J, Liu J, Wu L, Yang Z, Yang G, Mei Q, Chen Q, Ran F. Highly sensitive electrochemical determination of rutin based on the synergistic effect of 3D porous carbon and cobalt tungstate nanosheets. J Pharm Anal 2021; 12:453-459. [PMID: 35811621 PMCID: PMC9257437 DOI: 10.1016/j.jpha.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Rutin, a flavonoid found in fruits and vegetables, is a potential anticancer compound with strong anticancer activity. Therefore, electrochemical sensor was developed for the detection of rutin. In this study, CoWO4 nanosheets were synthesized via a hydrothermal method, and porous carbon (PC) was prepared via high-temperature pyrolysis. Successful preparation of the materials was confirmed, and characterization was performed by transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. A mixture of PC and CoWO4 nanosheets was used as an electrode modifier to fabricate the electrochemical sensor for the electrochemical determination of rutin. The 3D CoWO4 nanosheets exhibited high electrocatalytic activity and good stability. PC has a high surface-to-volume ratio and superior conductivity. Moreover, the hydrophobicity of PC allows large amounts of rutin to be adsorbed, thereby increasing the concentration of rutin at the electrode surface. Owing to the synergistic effect of the 3D CoWO4 nanosheets and PC, the developed electrochemical sensor was employed to quantitively determine rutin with high stability and sensitivity. The sensor showed a good linear range (5–5000 ng/mL) with a detection limit of 0.45 ng/mL. The developed sensor was successfully applied to the determination of rutin in crushed tablets and human serum samples. Highly sensitive electrochemical sensor based on 3D porous carbon and CoWO4 nanosheets. Electrochemical signal of rutin is mainly based on its concentration at the electrode surface. The introduction of porous carbon improved the electrochemical performance of 3D CoWO4. The sensor was successfully applied to determine rutin in human serum samples.
Collapse
|
14
|
Jose V, Jose V, Freeda Christy CE, Nesaraj AS. Spinel-based electrode materials for application in electrochemical supercapacitors – present status and future prospects. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vismaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Vinaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Clementz Edwardraj Freeda Christy
- Department of Civil Engineering, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Arputharaj Samson Nesaraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Javed MS, Hussain I, Batool S, Siyal SH, Najam T, Shah SSA, Imran M, Assiri MA, Hussain S. Energy storage properties of hydrothermally processed ultrathin 2D binder-free ZnCo 2O 4nanosheets. NANOTECHNOLOGY 2021; 32:385402. [PMID: 34139684 DOI: 10.1088/1361-6528/ac0c42] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 06/12/2023]
Abstract
High energy-density supercapacitors (SCs) with long operating life, cost-effective, and competitive cycling performance is attracted great research attention to competing in the requirements of the modern age. However, despite these benefits, SC hampers inadequate rate-capability and structural deterioration, which primarily affects its commercialization. Herein, ultra-thin two-dimensional (2D) ZnCo2O4nanosheets arein situanchored on the conductive surface of nickel foam (denoted as ZCO@NF) by hydrothermal process. The binder-free ZCO@NF is employed as an electrode for SCs and shows impressive charge storage properties. ZCO@NF electrode exhibited a high capacitance of 1250 (750) and 733 F g-1(440 C g-1) at 2.5 and 20 A g-1, respectively, demonstrating the outstanding rate-capability of 58.6% even at 8 times larger current density. Furthermore, the ZCO@NF electrode exhibits admirable capacitance retention of 96.5% after 10 000 cycles. This impressive performance of the ZCO@NF electrode is attributed to the high surface area which gives a short distance for ion/electron transfer, a high conductivity with extensive electroactive cities, and strong structural stability. The binder-free approach provides a strong relationship between the current collector and the active material, which turns into improved electrochemical operation as an electrode material for SCs.
Collapse
Affiliation(s)
- Muhammad Sufyan Javed
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Saima Batool
- Institute for Advanced Study; Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sajid Hussain Siyal
- Metallurgy & Materials Engineering Department, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Tayyaba Najam
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Mohammad A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
16
|
A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Synergistic effects of Fe and Mn dual-doping in Co 3S 4 ultrathin nanosheets for high-performance hybrid supercapacitors. J Colloid Interface Sci 2021; 590:226-237. [PMID: 33548606 DOI: 10.1016/j.jcis.2021.01.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/22/2022]
Abstract
Dopant engineering in nanostructured materials is an effective strategy to enhance electrochemical performances via regulating the electronic structures and achieving more active sites. In this work, a robust electrode based on Fe and Mn co-doped Co3S4 (FM-Co3S4) ultrathin nanosheet arrays (NSAs) on the Ni foam substrate is prepared through a facile hydrothermal method followed by a subsequent sulfurization reaction. It has been found that the incorporation of Fe ions is beneficial to higher specific capacity of the final electrode and Mn ions contribute to the excellent rate capability in the reversible redox processes. Density functional theory (DFT) calculations further verify that the Mn doping in the Co3S4 obviously shorten the energy gap of Co3S4, which favors the electrochemical performances. Due to the synergetic effects of different transition metal ions, the as-prepared FM-Co3S4 ultrathin NSAs exhibit a high specific capacity of 390 mAh g-1 at 5 A g-1, as well as superior rate capability and excellent cycling stability. Moreover, the corresponding quasi-solid-state hybrid supercapacitors constructed with the FM-Co3S4 ultrathin NSAs and active carbon exhibit a high energy density of 55 Wh kg-1 at the power density of 752 W kg-1. These findings demonstrate a new platform for developing high-performance electrodes for energy storage applications.
Collapse
|
18
|
Kim Y, Kim S, Hong M, Byon HR. Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Li Y, Luo Z, Qin H, Liang S, Chen L, Wang H, Zhao C, Chen S. Benzoate anions-intercalated cobalt-nickel layered hydroxide nanobelts as high-performance electrode materials for aqueous hybrid supercapacitors. J Colloid Interface Sci 2021; 582:842-851. [PMID: 32916577 DOI: 10.1016/j.jcis.2020.08.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
Layered metal hydroxide salts (LHSs) have recently gained extensive interests as an efficient electrode material for supercapacitors (SCs). Herein, we report, for the first time ever, the synthesis of a cobalt-nickel layered hybrid organic-inorganic LHS that was intercalated with benzoate anions (B-CoNi-LHSs) and observe a high performance as electrode materials for hybrid supercapacitors (HSCs). B-CoNi-LHSs were synthesized by using a co-precipitation method, where sodium benzoate was added dropwise to cobalt and nickel salt solution, without the addition of any organic solvent or surfactant. Due to the intercalation of anions and synergistic interactions of the multi-metallic components, the B-CoNi-LHSs electrode showed a high specific capacity of 570 C g-1 (specific capacitance of 1267 F·g-1) at 1 A g-1, excellent rate performance (65% from 1 to 10 A g-1) and outstanding cycling performance (81.09% over 8000 cycles), in comparison to the mono-metallic counterparts. An HSC device, assembled by using B-CoNi-LHSs as the positive electrode and activated carbon (AC) as the negative one, exhibited a power density of 780 W kg-1 at the energy density of 31.7 Wh kg-1, and 8543 W kg-1 at 18.1 Wh kg-1. Results from this study show that the organic-inorganic hybrids of layered dual-metal hydroxides intercalated with benzoate anions may be a viable candidate as electrode materials for high-performance SCs.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ziyang Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Huizhen Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shunfei Liang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lingyun Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Huayu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenglan Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95060, United States.
| |
Collapse
|
20
|
Qin H, Lv Y, Li P, Xiao M, Song H, Zhang Q, Yang J. Bismuth metal organic framework-derived Bi 2Se 3@C for high performance supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03904k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of Bi2Se3@C materials for high performance supercapacitors through a bismuth metal organic framework (CAU-17) assisted hydrothermal selenization method followed by carbonized annealing.
Collapse
Affiliation(s)
- Hengjie Qin
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Lv
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ping Li
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Meixia Xiao
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Haiyang Song
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qian Zhang
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jialun Yang
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
21
|
Kuzhandaivel H, Selvaraj Y, Franklin MC, Manickam S, Sivalingam Nallathambi K. Low-temperature-synthesized Mn-doped Bi 2Fe 4O 9 as an efficient electrode material for supercapacitor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01633d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Manganese-doped Bi2Fe4O9, a new material synthesized at a low temperature with a micro-rectangular-shaped particles, is used for supercapacitor applications.
Collapse
Affiliation(s)
| | - Yogapriya Selvaraj
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India
| | - Manik Clinton Franklin
- Electrochemical Materials and Devices Lab, Department of Chemistry, Bharathiar University, Coimbatore-641046, India
| | - Sornalatha Manickam
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India
| | | |
Collapse
|
22
|
Kumar S, Telpande S, Manikandan V, Kumar P, Misra A. Novel electrode geometry for high performance CF/Fe 2O 3 based planar solid state micro-electrochemical capacitors. NANOSCALE 2020; 12:19438-19449. [PMID: 32959860 DOI: 10.1039/d0nr04410e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel geometry of sharp-edged electrodes for planar micro-electrochemical capacitors is utilized for an enhanced performance compared to the conventionally used interdigitated electrodes. The sharp-edged electrode geometry achieves a 68% enhancement in the electric field at the sharp-edge of the electrodes as compared to interdigitated electrodes. Moreover, carbon foam with high specific surface area loaded with iron oxide nanoparticles allows a large mass loading for the pseudocapacitance in addition to electric double layer capacitance (EDLC). Thus, an enhancement of 235% was obtained in both the areal specific capacitance and energy density when the performance was compared with the interdigitated electrode based supercapacitors. Moreover, an excellent cycling stability (∼99.5%) over 10 000 charge-discharge cycles was also achieved. The high-performance architecture of sharp-edged electrodes paves a way for smart electrochemical capacitors using an efficient planar structure in combination with high-loading materials for large pseudocapacitance as well as EDLC.
Collapse
Affiliation(s)
- Sumana Kumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Swanand Telpande
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Veera Manikandan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Praveen Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Abha Misra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
23
|
Wang Z, Qu G, Wang C, Zhang X, Xiang G, Hou P, Xu X. Modified Co 4N by B-doping for high-performance hybrid supercapacitors. NANOSCALE 2020; 12:18400-18408. [PMID: 32941573 DOI: 10.1039/d0nr04043f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance energy storage systems are becoming essential to cope with the possible energy crisis in the future. Herein, unique hierarchical B-Co4N have been reasonably designed and synthesized on Ni foam (NF) via a typical chemical reduction strategy. The successful realization of B-doping engineering effectively facilitates ion and electron transport, adding the electrochemically reactive sites, which endow the B-Co4N-20/NF electrode with high specific capacity (817.9 C g-1 at 1 A g-1), excellent rate capability (maintained about 90.9% at 10 A g-1) and cycling stability (about 93.06% retention of the initial capacity after 5000 cycles). The corresponding hybrid supercapacitor assembled with B-Co4N-20/NF electrodes has an energy density of 25.85 W h kg-1 at the power density of 800.2 W kg-1 and a long cycle life (98.59% retention ratio after 5000 cycles). These remarkable properties indicate that the doping of heteroatom and the construction of hierarchical structure will provide a favorable reference for the performance promotion of next-generation energy storage devices.
Collapse
Affiliation(s)
- Zonghua Wang
- School of Physics and Technology, University of Jinan, Shandong 250022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Mao L, Zhao X, Wang H, Xu H, Xie L, Zhao C, Chen L. Novel Two-Dimensional Porous Materials for Electrochemical Energy Storage: A Minireview. CHEM REC 2020; 20:922-935. [PMID: 32614148 DOI: 10.1002/tcr.202000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023]
Abstract
Two dimensional (2D) porous materials have great potential in electrochemical energy conversion and storage. Over the past five years, our research group has focused on Simple, Mass, Homogeneous and Repeatable Synthesis of various 2D porous materials and their applications for electrochemical energy storage especially for supercapacitors (SCs). During the experimental process, through precisely controlling the experimental parameters, such as reaction species, molar ratio of different ions, concentration, pH value of reaction solution, heating temperature, and reaction time, we have successfully achieved the control of crystal structure, composition, crystallinity, morphology, and size of these 2D porous materials including transition metal oxides (TMOs), transition metal hydroxides (TMHOs), transition metal oxalates (TMOXs), transition metal coordination complexes (TMCCs) and carbon materials, as well as their derivatives and composites. We have also named some of them with CQU-Chen (CQU is the initialism of Chongqing University, Chen is the last name of Lingyun Chen), such as CQU-Chen-Co-O-1, CQU-Chen-Ni-O-H-1, CQU-Chen-Zn-Co-O-1, CQU-Chen-Zn-Co-O-2, CQU-Chen-OA-Co-2-1, CQU-Chen-Co-OA-1, CQU-Chen-Ni-OA-1, CQU-Chen-Gly-Co-3-1, CQU-Chen-Gly-Ni-2-1, CQU-Chen-Gly-Co-Ni-1, etc. The introduction of 2D porous materials as electrode materials for SCs improves the energy storage performances. These materials provide a large number of active sites for ion adsorption, supply plentiful channels for fast ion transport and boost electrical conductivity and facilitate electron transportation and ion penetration. The unique 2D porous structures review is mainly devoted to the introduction of our contribution in the 2D porous nanostructured materials for SC. Finally, the further directions about the preparation of 2D porous materials and electrochemical energy conversion and storage applications are also included.
Collapse
Affiliation(s)
- Lei Mao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Huayu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Hong Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Li Xie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chenglan Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lingyun Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
25
|
|
26
|
Li X, Xu Y, Wu H, Qian X, Chen L, Dan Y, Yu Q. Porous Fe3O4/C nanoaggregates by the carbon polyhedrons as templates derived from metal organic framework as battery-type materials for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Li Y, Li W, Yang C, Tao K, Ma Q, Han L. Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors. Dalton Trans 2020; 49:10421-10430. [DOI: 10.1039/d0dt02029j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1D porous S-doped Co3O4 nanorods with rich oxygen vacancies and enhanced energy storage capability were engineered by a coordination polymer-engaged strategy.
Collapse
Affiliation(s)
- Youjing Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Weiwei Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Cui Yang
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Kai Tao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| |
Collapse
|
28
|
Zhang J, Liu P, Bu R, Zhang H, Zhang Q, Liu K, Liu Y, Xiao Z, Wang L. In situ fabrication of a rose-shaped Co2P2O7/C nanohybrid via a coordination polymer template for supercapacitor application. NEW J CHEM 2020. [DOI: 10.1039/d0nj02414g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a coordination polymer as the template, the porous rose-shaped Co2P2O7/C-X were fabricated by in situ hybrid Co2P2O7 nanoparticles and nanocarbon for supercapacitor applications.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Peng Liu
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Ranran Bu
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Hao Zhang
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Qi Zhang
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Kang Liu
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Yanru Liu
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhenyu Xiao
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Wang
- Key Laboratory of Ecochemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
29
|
Zhao C, Jiang Y, Liang S, Gao F, Xie L, Chen L. Two-dimensional porous nickel oxalate thin sheets constructed by ultrathin nanosheets as electrode materials for high-performance aqueous supercapacitors. CrystEngComm 2020. [DOI: 10.1039/d0ce00268b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D porous nickel oxalate thin sheets constructed by ultrathin nanosheets were first synthesized by using a simple hydrothermal method. The resulting porous thin sheets exhibited superior supercapacitor performance.
Collapse
Affiliation(s)
- Chenglan Zhao
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Yuqian Jiang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Shunfei Liang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Fang Gao
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction
| | - Li Xie
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Lingyun Chen
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction
| |
Collapse
|
30
|
Kumar YA, Kumar KD, Kim HJ. Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135261] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wang L, Zhang R, Jiang Y, Tian H, Tan Y, Zhu K, Yu Z, Li W. Interfacial synthesis of micro-cuboid Ni 0.55Co 0.45C 2O 4 solid solution with enhanced electrochemical performance for hybrid supercapacitors. NANOSCALE 2019; 11:13894-13902. [PMID: 31304947 DOI: 10.1039/c9nr03790j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Efficient charge and energy storage relies essentially on the development of innovative electrode materials with enhanced electrochemical kinetics. Herein, Ni0.55Co0.45C2O4 solid solution was successfully synthesized by a liquid-liquid interfacial reaction. The observation of the morphologies of Ni0.55Co0.45C2O4 depicts a peculiar micro-cuboid structure composed of nanoparticles in the size range of 13 to 23 nm, benefiting the increase in the contribution of surface-controlled reactions to charge storage processes. The results from X-ray diffraction and thermogravimetric analysis demonstrate the similarity of the crystal structure and thermal decomposition behavior between Ni0.55Co0.45C2O4 and CoC2O4, and indicate that the CoC2O4 lattice plays a role as the fundamental framework in the solid solution instead of NiC2O4. The electrochemical measurements show that Ni0.55Co0.45C2O4 achieves a higher specific capacity of 562 C g-1 at a current density of 1 A g-1 than its counterpart NiC2O4/CoC2O4 hybrids, due to this the alternative arrangement of nickel and cobalt species in the solid solution expedites the diffusion process of active ions during the electrochemical reaction. Depending on the enhancement of the electrochemical stability in the solid solution, Ni0.55Co0.45C2O4 electrodes retain 87.4% of the initial capacity after 4000 cycles. The assembled Ni0.55Co0.45C2O4//AC hybrid supercapacitor attains an energy density of 38.5 W h kg-1 at a power density of 799 W kg-1 with a long cycling life (80% of the initial capacitance after 10 000 cycles). The excellent electrochemical performance suggests that Ni0.55Co0.45C2O4 is a promising candidate electrode material for supercapacitors.
Collapse
Affiliation(s)
- Lin Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Runa Zhang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Yang Jiang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Hua Tian
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Yu Tan
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Kaixin Zhu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Zhifeng Yu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Wang Li
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|