1
|
Hedayati Marzbali M, Hakeem IG, Ngo T, Balu R, Jena MK, Vuppaladadiyam A, Sharma A, Choudhury NR, Batstone DJ, Shah K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122341. [PMID: 39236613 DOI: 10.1016/j.jenvman.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Thermochemical treatment is rapidly emerging as an alternative method for the management of stabilised sewage sludges (biosolids) to effectively reduce waste volume, degrade contaminants, and generate valuable products, particularly biochar and hydrochar. Biosolids-derived char has a relatively high concentration of heavy metals compared with agricultural chars but is still applied to land due to its beneficial properties and ability to retain metals. However, non-agricultural applications can provide additional economic and environmental benefits, promote sustainability and support a circular economy. This review identifies extensive non-agricultural opportunity for biosolids biochar, including adsorption, catalysis, energy storage systems, biological process enhancement, and as additives for rubber compounding and construction. Biosolids chars have received limited attention vs agricultural char, and we draw on both areas of literature, as well as evaluating differences between agricultural and biosolids chars. A key opportunity for biosolids biochar in comparison with other materials and agricultural chars is its sustainable and low-cost nature, relatively high metals content, improving catalyst properties, and ability to modify in various stages to tune it to specific applications. The specific opportunities for hydrochar have only received limited attention. Research needs to include better understanding of the benefits and limitations for specific applications, as well as adjacent drivers, including society, regulation, and market and economics.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tien Ngo
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Manoj Kumar Jena
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Arun Vuppaladadiyam
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Abhishek Sharma
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Qu J, Shi S, Li Y, Liu R, Hu Q, Zhang Y, Wang Y, Ma Y, Hao X, Zhang Y. Fe/N co-doped magnetic porous hydrochar for chromium(VI) removal in water: Adsorption performance and mechanism investigation. BIORESOURCE TECHNOLOGY 2024; 394:130273. [PMID: 38160851 DOI: 10.1016/j.biortech.2023.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Four kinds of Fe/N co-doped porous hydrochar were prepared by one/two-step N-doping schemes using microwave/traditional pyrolysis methods for removing Cr(VI) from aqueous phase. Heterocyclic-N was introduced through CO(NH2)2-based hydrothermal carbonization process, which could adjust the electronic structure of the hydrochar framework. Furthermore, Fe0 and Fe3O4 were embedded into hydrochar via carbothermal reduction reaction using FeCl3 as the precursor, which improved the reducibility and magnetism of the material. The modified hydrochar exhibited pH-dependency and rapid kinetic equilibrium, and the maximal adsorption amount of magnetic porous hydrochar obtained by microwave-assisted one-step N-doping (MP1HCMW) reached 274.34 mg/g. Meanwhile, the modified hydrochar had a high tolerance to multiple co-existing ions and the removal efficiency maintained above 73.91 % during five regeneration cycles. Additionally, MP1HCMW efficiently removed Cr(VI) via pore filling, electrostatic attraction, ion exchange, reduction, complexation, and precipitation. Summarily, Fe/N co-doped porous hydrochar was a feasible adsorbent with outstanding remediation potential for Cr(VI)-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou 450002, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yunqiao Ma
- Heilongjiang Agricultural Environment and Cultivated Land Protection Station, Harbin 150036, China
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Pastushok O, Kivijärvi L, Laakso E, Haukka M, Piili H, Repo E. Electrochemical properties of graphite/nylon electrodes additively manufactured by laser powder bed fusion. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Chemical blowing strategy synthesis of nitrogen-doped hierarchical porous carbon from coal tar pitch for high-performance lithium-ion batteries. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Guo Y, Zhang X, Zhang D, Li S, Wang H, Peng Y, Bian Z. Catalysts containing Fe and Mn from dewatered sludge showing enhanced electrocatalytic degradation of triclosan. ENVIRONMENTAL RESEARCH 2022; 214:114065. [PMID: 35964666 DOI: 10.1016/j.envres.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The present work demonstrates a simple one-step pyrolysis method for the synthesis of a catalytic sludge-based carbon (SBC) biochar containing Fe and Mn from dehydrated sludge with added KMnO4 and Fe(II). The electrocatalytic degradation of triclosan (TCS) in water was evaluated using an Fe/Mn-SBC cathode to promote a heterogeneous Fenton-like reaction. The catalyst generated at 500 °C exhibited an abundant porous structure and a relatively high surface area, and produced an electrode with better conductivity and electron diffusion. The presence of metal oxides changed the surface structure defects of this biochar and enhanced its catalytic performance while increasing the electrochemically active surface area by 72.68 mF/cm2 compared with plain SBC. TCS was degraded (91.3%) within 180 min by oxygen species generated in situ on an Fe/Mn-SBC cathode because the activation energy for oxygen reduction was lowered by 4.62 kJ/mol. The degradation of TCS followed pseudo first-order kinetics and was controlled by TCS diffusion and interfacial chemical reactions between adsorbed TCS and the electrode. Possible TCS degradation pathways were devised based on the main intermediates, and 1O2 was found to be more important than •OH radicals. Through toxicity test and prediction, the toxicity of degradation was gradually reduced. This study demonstrates a simple and ecofriendly method for the electrocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Yajie Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Xinyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Dandan Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Shunlin Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Yiyin Peng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
6
|
Song W, Shi R, Zhang L, Gao T, Lian W, Liu K, Niu X, Wu Y, Nie K. One-dimensional N-doped carbon nanofibers produced by pre-oxide treatment for effective lithium storage. Dalton Trans 2022; 51:10221-10226. [PMID: 35748485 DOI: 10.1039/d2dt01307j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous carbon materials have been confirmed as attractive anode materials for lithium-ion batteries. Herein, an effective strategy to fabricate amorphous carbon materials at low temperature under air atmosphere is proposed. As demonstrated, one-dimensional nitrogen-doping carbon nanofibers were obtained through simple electrospinning technology, following low-temperature heat treatment. Meanwhile, the nitrogen-doping concentration can be regulated by the heating temperature, which can further introduce different levels of adsorption sites on the surface of carbon and enhance the electronic conductivity. Based on experimental investigation, carbon nanofibers with a high nitrogen doping concentration of 18.1 at% achieved an outstanding cycling durability (194.0 mA h g-1 at 2.0 A g-1 after 2000 cycles).
Collapse
Affiliation(s)
- Wei Song
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China
| | - Ruina Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China
| | - Lixin Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China
| | - Tiantian Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China
| | - Wenhao Lian
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Kankan Liu
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China.,School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Xueting Niu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Yuqi Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Kangrui Nie
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| |
Collapse
|
7
|
Sun Y, Zheng L, Zheng X, Xiao D, Yang Y, Zhang Z, Ai B, Sheng Z. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization. Front Chem 2022; 9:814647. [PMID: 35127654 PMCID: PMC8813774 DOI: 10.3389/fchem.2021.814647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Biochar is a low-cost adsorbent for sorptive removal of antibiotics from wastewater, but the adsorption efficiency needs to be improved. In this study, coconut-shell biochar was activated with KOH to improve the adsorption efficiency and magnetically modified with FeCl3 to enable recycling. The amount of KOH and the concentration of FeCl3 were optimized to reduce the pollution and production cost. The KOH-activated and FeCl3-magnetized biochar gave good sulfonamide antibiotic (SA) removal. The maximum adsorption capacities for sulfadiazine, sulfamethazine and sulfamethoxazole were 294.12, 400.00 and 454.55 mg g-1, respectively, i.e., five to seven times higher than those achieved with raw biochar. More than 80% of the adsorption capacity was retained after three consecutive adsorption-desorption cycles. A combination of scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopies, and magnetic hysteresis analysis showed that KOH activation increased the specific surface area, porosity, and number of oxygen-rich functional groups. Iron oxide particles, which were formed by FeCl3 magnetization, covered the biochar surface. The SAs were adsorbed on the modified biochar via hydrogen bonds between SA molecules and -OH/-COOH groups in the biochar. Investigation of the adsorption kinetics and isotherms showed that the adsorption process follows a pseudo-second-order kinetic model and a monolayer adsorption mechanism. The adsorption capacity at low pH was relatively high because of a combination of π+-π electron-donor-acceptor, charge-assisted hydrogen-bonding, electrostatic, and Lewis acid-base interactions, pore filling, van der Waals forces and hydrophobic interactions. The results of this study show that magnetically modified biochar has potential applications as an effective, recyclable adsorbent for antibiotic removal during wastewater treatment.
Collapse
Affiliation(s)
- Ying Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| |
Collapse
|
8
|
Rangabhashiyam S, Lins PVDS, Oliveira LMTDM, Sepulveda P, Ighalo JO, Rajapaksha AU, Meili L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118581. [PMID: 34861332 DOI: 10.1016/j.envpol.2021.118581] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The production of biochar from sewage sludge pyrolysis is a promising approach to transform the waste resultant from wastewater treatment plants (WWTPs) to a potential adsorbent. The current review provides an up-to-date review regarding important aspects of sewage sludge pyrolysis, highlighting the process that results major solid fraction (biochar), as high-value product. Further, the physio-chemical characteristics of sewage-sludge derived biochar such as the elemental composition, specific surface area, pore size and volume, the functional groups, surface morphology and heavy metal content are discussed. Recent progress on adsorption of metals, emerging pollutants, dyes, nutrients and oil are discussed and the results are examined. The sewage sludge-derived biochar is a promising material that can make significant contributions on pollutants removal from water by adsorption and additional benefit of the management of huge volume of sewage. Considering all these aspects, this field of research still needs more attention from the researchers in the direction of the technological features and sustainability aspects.
Collapse
Affiliation(s)
- S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | | | | | - Pamela Sepulveda
- Centro para el Desarrollo de Nanociencia y Nanotecnología CEDENNA, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Chile, Santiago, Chile
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Anushka Upamali Rajapaksha
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Lucas Meili
- Laboratory of Process, Technology Center, Federal University of Alagoas, Maceió-AL, Brazil.
| |
Collapse
|
9
|
Dong H, Zhang L, Shao L, Wu Z, Zhan P, Zhou X, Chen J. Versatile Strategy for the Preparation of Woody Biochar with Oxygen-Rich Groups and Enhanced Porosity for Highly Efficient Cr(VI) Removal. ACS OMEGA 2022; 7:863-874. [PMID: 35036752 PMCID: PMC8756790 DOI: 10.1021/acsomega.1c05506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 05/25/2023]
Abstract
Biochar is widely used to remove hexavalent chromium [Cr(VI)] from wastewater through adsorption, which is recognized as a facile, cost-efficient, and high-selectivity approach. In this study, a versatile strategy that combines delignification with subsequent carbonization and KOH activation is proposed to prepare a novel woody biochar from waste poplar sawdust. By virtue of the unique multilayered and honeycomb porous structure induced by delignification and activation processes, the resultant activated carbonized delignified wood (ACDW) exhibits a high specific surface area of 970.52 m2 g-1 with increasing meso- and micropores and abundant oxygen-containing functional groups. As a benign adsorbent for the uptake of Cr(VI) in wastewater, ACDW delivers a remarkable adsorption capacity of 294.86 mg g-1 in maximum, which is significantly superior to that of unmodified counterparts and other reported biochars. Besides, the adsorption behaviors fit better with the Langmuir isotherm, the pseudo-second-order kinetic model, and the adsorption diffusion model in batch experiments. Based on the results, we put forward the conceivable adsorption mechanism that the synergistic contributions of the capillary force, electrostatic attraction, chemical complexation, and reduction action facilitate the Cr(VI) capture by ACDW.
Collapse
Affiliation(s)
- Hongping Dong
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Lin Zhang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Lishu Shao
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Zhiping Wu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Peng Zhan
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| | - Xiaoxun Zhou
- College
of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jienan Chen
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Changsha 410004, China
| |
Collapse
|
10
|
Xiao Y, Raheem A, Ding L, Chen WH, Chen X, Wang F, Lin SL. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery- A review. CHEMOSPHERE 2022; 287:131969. [PMID: 34450364 DOI: 10.1016/j.chemosphere.2021.131969] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
With the quick increase in industrialization and urbanization, a mass of sludge has been produced on the account of increased wastewater treatment facilities. Sewage sludge (SS) management has become one of the most crucial environmental problems because of the existence of various pollutants. However, SS is a carbon-rich material, which has favored novel technologies for biochar production, which can be utilized for dissimilar applications. This review systematically analyzes and summarizes the pretreatment, modification, and especially application of sewage sludge-derived biochar (SSBC), based on published literature. The comparative assessment of pretreatment technology such as pyrolysis, hydrothermal carbonization, combustion, deashing, and co-feeding is presented to appraise their appropriateness for SS resource availability and the production of SSBC. In addition, the authors summarize and analyze the current modification methods and divide them into two categories: physical properties and surface chemical modifications. The applications of SSBC as absorbent, catalyst and catalyst support, electrode materials, gas storage, soil amendment, and sold biofuel are reviewed in detail. Furthermore, the discussion about the existing problems and the direction of future efforts are presented at the end of each section to envisage SS as a promising opportunity for resources rather than a nuisance.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Abdul Raheem
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Xueli Chen
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Fuchen Wang
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
11
|
Zhao B, Xu X, Liu W, Zhang R, Cui M, Liu J, Zhang W. The evaluation of immobilization behavior and potential ecological risk of heavy metals in bio-char with different alkaline activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21396-21410. [PMID: 33411270 DOI: 10.1007/s11356-020-12183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The bio-char was prepared by co-pyrolysis of municipal sewage sludge and biomass with chemical activation. The alkaline activating agents of KOH and K2CO3 were used to develop multilevel pore structure without heavy metal. The proximate analysis, ultimate analysis, SEM, and surface area and porosity analyzer were applied to present the physico-chemical properties and multilevel pore structure of bio-char. After impregnation pretreatment, the KOH provided more functional ingredients and reacted with C to expand pore structure for bio-chars. It was confirmed the specific surface area reached 2122.43 m2/g, and micropore area was 1674.85 m2/g after co-pyrolysis at 800 °C. Through the pretreatment of alkaline activation, the novel evaluation of heavy metal immobilization behavior in bio-char matrix were investigated by BCR sequential extraction and leaching tests. The KOH activation showed prominent immobilization behavior relatively, and the K2CO3 activation had more noticeable effects on leaching behavior. For Cu, Ni, Cr, Cd, Pb, and Zn, after co-pyrolysis at 900 °C, the proportion of unstable fraction decreased significantly, and the residual fractions of heavy metals were above 89.44% according to BCR sequential extraction procedure. Under optimal pyrolysis temperature, the Er value of bio-char reduced to 41.93, and the potential ecological risks decreased from considerable risk to low risk to ensure the further eco-friendly application.
Collapse
Affiliation(s)
- Bing Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xinyang Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wenbao Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Miao Cui
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Jie Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wenbo Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
12
|
Li M, Zhou J, Bi YG, Zhou SQ, Mo CH. Polypyrrole/sewage sludge carbon as low-cost and high-effective catalyst for enhancing hexavalent chromium reduction and bio-power generation in dual chamber microbial fuel cells. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Qu J, Wang Y, Tian X, Jiang Z, Deng F, Tao Y, Jiang Q, Wang L, Zhang Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123292. [PMID: 32645546 DOI: 10.1016/j.jhazmat.2020.123292] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 05/22/2023]
Abstract
Herein, a high-performance porous biochar described as PBCKOH was successfully synthesized by two-step pyrolysis of corn straw with chemical activation of KOH, and was employed for the elimination of Cr(VI) and naphthalene (NAP) from water. Benefiting from KOH activation, the PBCKOH was found to possess huge specific surface area of 2183.80 m2/g and many well-developed micropores with average particle size of 2.75 nm and main pore diameters distribution from 1 to 2 nm. The PBCKOH presented an excellent adsorption performance with a theoretical monolayer uptake of 116.97 mg/g for Cr(VI) and a heterogeneous adsorption capacity of 450.43 mg/g for NAP. The uptake equilibrium was attained within about 120 min for Cr(VI), while about 180 min for NAP following avrami fractional-order model, revealing the existence of multiple kinetics during the adsorption. The thermodynamic results showed that the uptake of both Cr(VI) and NAP occurred spontaneously (-ΔG°), while in an endothermic nature for Cr(VI) (+ΔH°) and an exothermic characteristic for NAP (-ΔH°) with different randomness. Furthermore, the PBCKOH was believed to enhance the Cr(VI) adsorption mainly through the combination of electrostatic attraction, complexation, ion exchange and reduction action, while achieving the high NAP uptake by pore filling and π-π stacking interactions.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Large-scale synthesis of highly structural-connecting carbon nanospheres as an anodes material for lithium-ion batteries with high-rate capacity. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Jiang J, Nie G, Nie P, Li Z, Pan Z, Kou Z, Dou H, Zhang X, Wang J. Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. NANO-MICRO LETTERS 2020; 12:183. [PMID: 34138206 PMCID: PMC7770795 DOI: 10.1007/s40820-020-00521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
Among the various morphologies of carbon-based materials, hollow carbon nanostructures are of particular interest for energy storage. They have been widely investigated as electrode materials in different types of rechargeable batteries, owing to their high surface areas in association with the high surface-to-volume ratios, controllable pores and pore size distribution, high electrical conductivity, and excellent chemical and mechanical stability, which are beneficial for providing active sites, accelerating electrons/ions transfer, interacting with electrolytes, and giving rise to high specific capacity, rate capability, cycling ability, and overall electrochemical performance. In this overview, we look into the ongoing progresses that are being made with the nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers, in relation to their applications in the main types of rechargeable batteries. The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and lithium-sulfur batteries are comprehensively reviewed and discussed, together with the challenges being faced and perspectives for them.
Collapse
Affiliation(s)
- Jiangmin Jiang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Guangdi Nie
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ping Nie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Chemistry, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| |
Collapse
|
16
|
A Review of Non-Soil Biochar Applications. MATERIALS 2020; 13:ma13020261. [PMID: 31936099 PMCID: PMC7013903 DOI: 10.3390/ma13020261] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.
Collapse
|
17
|
Li X, Zhang F, Fei B, Song Y, Zhai B, Wang X. Controlled synthesis of three dimensional hierarchical graphene nanostructures from metal complexes as an anode material for lithium-ion batteries. CrystEngComm 2020. [DOI: 10.1039/d0ce00492h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three dimensional hierarchical graphene nanostructures with refined secondary structures and primary nanobuilding units are realized here via a metal complex strategy.
Collapse
Affiliation(s)
- Xiuli Li
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Feng Zhang
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Ban Fei
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Yu Song
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Bin Zhai
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Xiuying Wang
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| |
Collapse
|