1
|
Crapnell RD, Bernalte E, Muñoz RAA, Banks CE. Electroanalytical overview: the use of laser-induced graphene sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39648867 DOI: 10.1039/d4ay01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Laser-induced graphene, which was first reported in 2014, involves the creation of graphene by using a laser to modify a polyimide surface. Since then, laser-induced graphene has been extensively studied for application in different scientific fields. One beneficial approach is the use of laser-induced graphene coupled with electrochemistry, where there is a growing need for disposable, conductive, reproducible, flexible, biocompatible, sustainable, and economical electrodes. In this mini overview, we explore the use of laser-induced graphene as the basis of electroanalytical sensors. We first introduce laser-induced graphene, before moving to the use of laser-induced graphene electrodes highlighting the various approaches and different laser parameters used to produce different graphene micro and macro structures, whilst describing how these structures are characterised and benchmarked for those working in the field of laser-induced graphene electrodes for comparison aspects. Next, we turn to the use of laser-induced graphene electrodes as the basis of electrochemical sensing platforms towards key analytes and its use in the development of biosensors. We provide a critical overview of the use of laser-induced graphene sensors compared to screen-printed and additive manufactured electrodes, providing future suggestions for the field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
2
|
Clark KM, Nekoba DT, Viernes KL, Zhou J, Ray TR. Fabrication of high-resolution, flexible, laser-induced graphene sensors via stencil masking. Biosens Bioelectron 2024; 264:116649. [PMID: 39137522 PMCID: PMC11368413 DOI: 10.1016/j.bios.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The advent of wearable sensing platforms capable of continuously monitoring physiological parameters indicative of health status have resulted in a paradigm shift for clinical medicine. The accessibility and adaptability of such portable, unobtrusive devices enables proactive, personalized care based on real-time physiological insights. While wearable sensing platforms exhibit powerful capabilities for continuously monitoring physiological parameters, device fabrication often requires specialized facilities and technical expertise, restricting deployment opportunities and innovation potential. The recent emergence of rapid prototyping approaches to sensor fabrication, such as laser-induced graphene (LIG), provides a pathway for circumventing these barriers through low-cost, scalable fabrication. However, inherent limitations in laser processing restrict the spatial resolution of LIG-based flexible electronic devices to the minimum laser spot size. For a CO2 laser-a commonly reported laser for device production-this corresponds to a feature size of ∼120 μm. Here, we demonstrate a facile, low-cost stencil-masking technique to reduce the minimum resolvable feature size of a LIG-based device from 120 ± 20 μm to 45 ± 3 μm when fabricated by CO2 laser. Characterization of device performance reveals this stencil-masked LIG (s-LIG) method yields a concomitant improvement in electrical properties, which we hypothesize is the result of changes in macrostructure of the patterned LIG. We showcase the performance of this fabrication method via production of common sensors including temperature and multi-electrode electrochemical sensors. We fabricate fine-line microarray electrodes not typically achievable via native CO2 laser processing, demonstrating the potential of the expanded design capabilities. Comparing microarray sensors made with and without the stencil to traditional macro LIG electrodes reveals the s-LIG sensors have significantly reduced capacitance for similar electroactive surface areas. Beyond improving sensor performance, the increased resolution enabled by this metal stencil technique expands capabilities for scalable fabrication of high-performance wearable sensors in low-resource settings without reliance on traditional fabrication pathways.
Collapse
Affiliation(s)
- Kaylee M Clark
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Deylen T Nekoba
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Kian Laʻi Viernes
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jie Zhou
- Department of Electrical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Tyler R Ray
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA; Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
3
|
Li Z, Huang L, Cheng L, Guo W, Ye R. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications. SMALL METHODS 2024; 8:e2400118. [PMID: 38597770 PMCID: PMC11579578 DOI: 10.1002/smtd.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The rising global population and improved living standards have led to an alarming increase in non-communicable diseases, notably cardiovascular and chronic respiratory diseases, posing a severe threat to human health. Wearable sensing devices, utilizing micro-sensing technology for real-time monitoring, have emerged as promising tools for disease prevention. Among various sensing platforms, graphene-based sensors have shown exceptional performance in the field of micro-sensing. Laser-induced graphene (LIG) technology, a cost-effective and facile method for graphene preparation, has gained particular attention. By converting polymer films directly into patterned graphene materials at ambient temperature and pressure, LIG offers a convenient and environmentally friendly alternative to traditional methods, opening up innovative possibilities for electronic device fabrication. Integrating LIG-based sensors into health monitoring systems holds the potential to revolutionize health management. To commemorate the tenth anniversary of the discovery of LIG, this work provides a comprehensive overview of LIG's evolution and the progress of LIG-based sensors. Delving into the diverse sensing mechanisms of LIG-based sensors, recent research advances in the domain of health monitoring are explored. Furthermore, the opportunities and challenges associated with LIG-based sensors in health monitoring are briefly discussed.
Collapse
Affiliation(s)
- Zihao Li
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Libei Huang
- Division of Science, Engineering and Health StudySchool of Professional Education and Executive DevelopmentThe Hong Kong Polytechnic University (PolyU SPEED)KowloonHong Kong999077China
| | - Le Cheng
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Weihua Guo
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Ruquan Ye
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
4
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
5
|
Kongkaew S, Srilikhit A, Janduang S, Thipwimonmas Y, Kanatharana P, Thavarungkul P, Limbut W. Single laser synthesis of gold nanoparticles-polypyrrole-chitosan on laser-induced graphene for ascorbic acid detection. Talanta 2024; 278:126446. [PMID: 38936107 DOI: 10.1016/j.talanta.2024.126446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous synthesis of gold nanoparticles (AuNPs) and graphene by laser ablation was demonstrated. The in-situ synthesis was performed by laser ablation of a polymer substrate covered with a gold precursor dispersion. The gold precursor was prepared in a copolymer solution of pyrrole (Py) and chitosan (Chi) to improve the nucleation of gold embedded on the laser-induced graphene electrode (LIGE). The morphology of AuNPs-pPy-Chi/LIGE was studied by scanning electron microscopy and characterized electrochemically by cyclic voltammetry. A comprehensive investigation of the electrochemical and physical features of the AuNPs-pPy-Chi/LIGE was carried out. The parameters of differential pulse voltammetry were adjusted to enhance the response to ascorbic acid (AA). The AuNPs-pPy-Chi/LIGE produced two linear ranges: from 0.25 to 5.00 and 5.00-25.00 mmol L-1. The limit of detection was 0.22 mmol L-1. Hundreds of electrodes were tested to demonstrate the excellent reproducibility of the AuNPs-pPy-Chi/LIGE fabrication. Overall, the proposed electrode allows the successful detection of AA in orange juice products with acceptable accuracy (recoveries = 97 ± 2 to 109.1 ± 0.7). The preparation strategy of the proposed AuNPs-pPy-Chi/LIGE could be adapted to detect other compounds or biomarkers.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Angkana Srilikhit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Santipap Janduang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yudtapum Thipwimonmas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
6
|
Su R, Liang M, Yuan Y, Huang C, Xing W, Bian X, Lian Y, Wang B, You Z, You R. High-Performance Sensing Platform Based on Morphology/Lattice Collaborative Control of Femtosecond-Laser-Induced MXene-Composited Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404889. [PMID: 39041832 PMCID: PMC11423250 DOI: 10.1002/advs.202404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Flexible sensors based on laser-induced graphene (LIG) are widely used in wearable personal devices, with the morphology and lattice arrangement of LIG the key factors affecting their performance in various applications. In this study, femtosecond-laser-induced MXene-composited graphene (LIMG) is used to improve the electrical conductivity of graphene by incorporating MXene, a 2D material with a high concentration of free electrons, into the LIG structure. By combining pump-probe detection, laser-induced breakdown spectroscopy (LIBS), and density functional theory (DFT) calculations, the morphogenesis and lattice structuring principles of LIMG is explored, with the results indicating that MXene materials are successfully embedded in the graphene lattice, altering both their morphology and electrical properties. The structural sparsity and electrical conductivity of LIMG composites (up to 3187 S m-1) are significantly enhanced compared to those of LIG. Based on these findings, LIMG has been used in wearable electronics. LIMG electrodes are used to detect uric acid, with a minimum detection limit of 2.48 µM. Additionally, LIMG-based pressure and bending sensors have been successfully used to monitor human limb movement and pulse. The direct in situ femtosecond laser patterning synthesis of LIMG has significant implications for developing flexible wearable electronic sensors.
Collapse
Affiliation(s)
- Ruige Su
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Misheng Liang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yongjiu Yuan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chaojun Huang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Wenqiang Xing
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Xiaomeng Bian
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yiling Lian
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zheng You
- State Key Laboratory of Precision Testing Technology and Instruments, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui You
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| |
Collapse
|
7
|
Zhu J, Xiao Y, Zhang X, Tong Y, Li J, Meng K, Zhang Y, Li J, Xing C, Zhang S, Bao B, Yang H, Gao M, Pan T, Liu S, Lorestani F, Cheng H, Lin Y. Direct Laser Processing and Functionalizing PI/PDMS Composites for an On-Demand, Programmable, Recyclable Device Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400236. [PMID: 38563243 PMCID: PMC11361840 DOI: 10.1002/adma.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronics Science and Technology of China, Quzhou 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingying Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiuqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Chenghao Xing
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Benkun Bao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Farnaz Lorestani
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
8
|
Balsamo J, Zhou K, Kammarchedu V, Ebrahimi A, Bess EN. Mechanistic Insight into Intestinal α-Synuclein Aggregation in Parkinson's Disease Using a Laser-Printed Electrochemical Sensor. ACS Chem Neurosci 2024; 15:2623-2632. [PMID: 38959406 PMCID: PMC11258680 DOI: 10.1021/acschemneuro.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Aggregated deposits of the protein α-synuclein and depleting levels of dopamine in the brain correlate with Parkinson's disease development. Treatments often focus on replenishing dopamine in the brain; however, the brain might not be the only site requiring attention. Aggregates of α-synuclein appear to accumulate in the gut years prior to the onset of any motor symptoms. Enteroendocrine cells (specialized gut epithelial cells) may be the source of intestinal α-synuclein, as they natively express this protein. Enteroendocrine cells are constantly exposed to gut bacteria and their metabolites because they border the gut lumen. These cells also express the dopamine metabolic pathway and form synapses with vagal neurons, which innervate the gut and brain. Through this connection, Parkinson's disease pathology may originate in the gut and spread to the brain over time. Effective therapeutics to prevent this disease progression are lacking due to a limited understanding of the mechanisms by which α-synuclein aggregation occurs in the gut. We previously proposed a gut bacterial metabolic pathway responsible for the initiation of α-synuclein aggregation that is dependent on the oxidation of dopamine. Here, we develop a new tool, a laser-induced graphene-based electrochemical sensor chip, to track α-synuclein aggregation and dopamine level over time. Using these sensor chips, we evaluated diet-derived catechols dihydrocaffeic acid and caffeic acid as potential inhibitors of α-synuclein aggregation. Our results suggest that these molecules inhibit dopamine oxidation. We also found that these dietary catechols inhibit α-synuclein aggregation in STC-1 enteroendocrine cells. These findings are critical next steps to reveal new avenues for targeted therapeutics to treat Parkinson's disease, specifically in the context of functional foods that may be used to reshape the gut environment.
Collapse
Affiliation(s)
- Julia
M. Balsamo
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Keren Zhou
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Vinay Kammarchedu
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Aida Ebrahimi
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
- Department
of Biomedical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Elizabeth N. Bess
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92617, United States
| |
Collapse
|
9
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
10
|
Thaweeskulchai T, Sakdaphetsiri K, Schulte A. Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology. Mikrochim Acta 2024; 191:292. [PMID: 38687361 DOI: 10.1007/s00604-024-06350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties. LIG can be easily produced by single-step laser scribing at normal room temperature and pressure using easily accessible commercial level laser machines and materials. With the increasing demand for novel wearable devices for biomedical applications, LIG on flexible substrates can readily serve as a technological platform to be further developed for biomedical applications such as point-of-care (POC) testing and wearable devices for healthcare monitoring system. This review will provide a comprehensive grounding on LIG from its inception and fabrication mechanism to the characterization of its key functional properties. The exploration of biomedicals applications in the form of wearable and point-of-care devices will then be presented. Issue of health risk from accidental exposure to LIG will be covered. Then LIG-based wearable devices will be compared to devices of different materials. Finally, we discuss the implementation of Internet of Medical Things (IoMT) to wearable devices and explore and speculate on its potentials and challenges.
Collapse
Affiliation(s)
- Thana Thaweeskulchai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand.
| | - Kittiya Sakdaphetsiri
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand
| |
Collapse
|
11
|
Chen X, Yan X, Qiu J, Zhang X, Zhang Y, Zhou H, Zhao Y, Han L, Zhang Y. An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection. SENSORS & DIAGNOSTICS 2024; 3:1724-1732. [DOI: 10.1039/d4sd00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
An electrochemical biosensing chip using rGO-modified LIG was developed to detect exosomes for breast cancer diagnostics.
Collapse
Affiliation(s)
- Xiaoshuang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Xiaohui Yan
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Xue Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Hongpeng Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Yujuan Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
- School of Integrated Circuits, Shandong University, Jinan (250100), China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao (266000), China
- School of Integrated Circuits, Shandong University, Jinan (250100), China
| |
Collapse
|
12
|
Tran DM, Son JW, Ju TS, Hwang C, Park BH. Dopamine-Regulated Plasticity in MoO 3 Synaptic Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49329-49337. [PMID: 37819637 DOI: 10.1021/acsami.3c06866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.
Collapse
Affiliation(s)
- Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Ouedraogo B, Baachaoui S, Tall A, Tapsoba I, Raouafi N. Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum. Mikrochim Acta 2023; 190:316. [PMID: 37480385 DOI: 10.1007/s00604-023-05909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The level control of biological active molecules in human body fluids is important for the surveillance of several human diseases. Dopamine (DA) and uric acid (UA) are two important biomarkers of neurological and bone diseases, respectively. Design of sensitive and cost-effective sensors for their detection is an effervescent research field. We report on the straightforward design of laser-induced graphene electrodes (LIGEs) from the laser ablation of a polyimide substrate and their modification by electrochemical deposition of gold nanoparticles (AuNPs/LIGE) and their uses as chemosensors. Electrochemical investigations showed that the presence of gold nanoclusters onto the electrode surface improved the electrochemical surface area (ECSA) and the heterogenous electron transfer (HET) rate. Furthermore, the AuNPs/LIGEs can be used to detect simultaneously low concentrations of DA and UA in presence of ascorbic acid (AA) as an potentially interfering substance at redox potentials of 300 mV, 230 mV and 450 mV and 91 mV, respectively, compared with the Ag/AgCl (3 M KCl) reference electrode in cyclic voltametric. The method displayed linear ranges varying from 2 to 20 μM and 5 to 50 μM, led to limits of detection of 0.37 μM and 0.71 μM for DA and UA, respectively. The AuNPs/LIGE was applied to simultaneously detect both analytes in scarcely diluted human serum with good recoveries. The data show that the recovery percentages ranged from 94% ± 2.1 to 102 % ± 0.5 and from 94% ±0.3 to 112% ± 1.4 for dopamine and uric acid, respectively. Thus, the AuNPs/LIGEs are promising candidates for the detection of other biologically active molecules such as drugs, pesticides, and metabolites.
Collapse
Affiliation(s)
- Bibata Ouedraogo
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Sabrine Baachaoui
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia
| | - Amidou Tall
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, 12 BP 417, Ouagadougou, Burkina Faso
| | - Issa Tapsoba
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Noureddine Raouafi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia.
| |
Collapse
|
15
|
Wang L, Li M, Li B, Wang M, Zhao H, Zhao F. Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water. Foods 2023; 12:2277. [PMID: 37372489 DOI: 10.3390/foods12122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Carbendazim (CBZ) abuse can lead to pesticide residues, which may threaten the environment and human health. In this paper, a portable three-electrode sensor based on laser-induced graphene (LIG) was proposed for the electrochemical detection of CBZ. Compared with the traditional preparation method of graphene, LIG is prepared by exposing the polyimide film to a laser, which is easily produced and patterned. To enhance the sensitivity, platinum nanoparticles (PtNPs) were electrodeposited on the surface of LIG. Under optimal conditions, our prepared sensor (LIG/Pt) has a good linear relationship with CBZ concentration in the range of 1-40 μM, with a low detection limit of 0.67 μM. Further, the sensor shows good recovery rates for the detection of CBZ in wastewater, which provides a fast and reliable method for real-time analysis of CBZ residues in water samples.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mengyue Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Bo Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hua Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fengnian Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Bekmezci M, Ozturk H, Akin M, Bayat R, Sen F, Darabi R, Karimi-Maleh H. Bimetallic Biogenic Pt-Ag Nanoparticle and Their Application for Electrochemical Dopamine Sensor. BIOSENSORS 2023; 13:bios13050531. [PMID: 37232892 DOI: 10.3390/bios13050531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
In this study, Silver-Platinum (Pt-Ag) bimetallic nanoparticles were synthesized by the biogenic reduction method using plant extracts. This reduction method offers a highly innovative model for obtaining nanostructures using fewer chemicals. According to this method, a structure with an ideal size of 2.31 nm was obtained according to the Transmission Electron Microscopy (TEM) result. The Pt-Ag bimetallic nanoparticles were characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), and Ultraviolet-Visible (UV-VIS) spectroscopy. For the electrochemical activity of the obtained nanoparticles in the dopamine sensor, electrochemical measurements were made with the Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) methods. According to the results of the CV measurements taken, the limit of detection (LOD) was 0.03 µM and the limit of quantification (LOQ) was 0.11 µM. To investigate the antibacterial properties of the obtained Pt-Ag NPs, their antibacterial effects on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were investigated. In this study, it was observed that Pt-Ag NPs, which were successfully synthesized by biogenic synthesis using plant extract, exhibited high electrocatalytic performance and good antibacterial properties in the determination of dopamine (DA).
Collapse
Affiliation(s)
- Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya 43100, Turkey
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, Kutahya 43100, Turkey
| | - Hudanur Ozturk
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya 43100, Turkey
| | - Merve Akin
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya 43100, Turkey
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, Kutahya 43100, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya 43100, Turkey
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, Kutahya 43100, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya 43100, Turkey
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 611731, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 611731, China
| |
Collapse
|
17
|
Wanjari VP, Reddy AS, Duttagupta SP, Singh SP. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42643-42657. [PMID: 35622288 DOI: 10.1007/s11356-022-21035-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are miniaturized devices that provide the advantage of in situ and point-of-care monitoring of analytes of interest. Electrochemical biosensors use the mechanism of oxidation-reduction reactions and measurement of corresponding electron transfer as changes in current, voltage, or other parameters using different electrochemical techniques. The use of electrochemically active materials is critical for the effective functioning of electrochemical biosensors. Laser-induced graphene (LIG) has garnered increasing interest in biosensor development and improvement due to its high electrical conductivity, specific surface area, and simple and scalable fabrication process. The effort of this perspective is to understand the existing classes of analytes and the mechanisms of their detection using LIG-based biosensors. The manuscript has highlighted the potential use of LIG, its modifications, and its use with various receptors for sensing various environmental pollutants. Although the conventional graphene-based sensors effectively detect trace levels for many analytes in different applications, the chemical and energy-intensive fabrication and time-consuming processes make it imperative to explore a low-cost and scalable option such as LIG for biosensors production. The focus of these potential biosensors has been kept on detection analytes of environmental significance such as heavy metals ions, organic and inorganic compounds, fertilizers, pesticides, pathogens, and antibiotics. The use of LIG directly as an electrode, its modifications with nanomaterials and polymers, and its combination with bioreceptors such as aptamers and polymers has been summarized. The strengths, weaknesses, opportunities, and threats analysis has also been done to understand the viability of incorporating LIG-based electrochemical biosensors for environmental applications.
Collapse
Affiliation(s)
- Vikram P Wanjari
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
| | - A Sudharshan Reddy
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India.
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India.
- Interdisciplinary Program in Climate Studies, IIT Bombay, Mumbai, India.
| |
Collapse
|
18
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
19
|
Hong Q, Zhu W, Wang S, Jiang L, He J, Zhan J, Li X, Zhao X, Zhao B. High-Resolution Femtosecond Laser-Induced Carbon and Ag Hybrid Structure for Bend Sensing. ACS OMEGA 2022; 7:42256-42263. [PMID: 36440162 PMCID: PMC9685746 DOI: 10.1021/acsomega.2c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized resistance-based portable bending sensors have been widely used for human health monitoring in recent years. Their sensitivities are defined by their resistance variations (ΔR/R), which strongly rely on the conductivity and minimum line width of the sensing unit. Laser-induced carbonization is a fast and simple method to fabricate porous-sensing structures. However, the fabrication resolution of conductive and deformation-sensitive structures is limited by the thermal effect of commonly used laser sources. With the assistance of femtosecond laser temporal shaping, plasma ejection confinement, and silver nitrate doping, the sheet resistance of the sensing structure was improved from 15 to 0.0004 Ω/□. A thin line with a lateral resolution of 6.5 μm is fabricated as the sensing unit. The fFabricated structures are characterized by electron microscopy, Raman spectroscopy, energy-dispersive spectroscopy, X-ray scattering, and time-resolved images. The strain sensor demonstrates a ΔR/R of 25.8% with a rising edge of 109 ms in the cyclic bending test. The sensor is further applied for detecting human pulse and finger bending.
Collapse
Affiliation(s)
- Quan Hong
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Weihua Zhu
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Sumei Wang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Lan Jiang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiahua He
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jie Zhan
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Xin Li
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoming Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| | - Bingquan Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| |
Collapse
|
20
|
Bahri M, Amin Elaguech M, Nasraoui S, Djebbi K, Kanoun O, Qin P, Tlili C, Wang D. Laser-Induced Graphene Electrodes for Highly Sensitive Detection of DNA Hybridization via Consecutive Cytosines (polyC)-DNA-based Electrochemical Biosensors. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Ebrahimi R, Barzegari A, Teimuri-Mofrad R, Kordasht HK, Hasanzadeh M, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rad AA, Shadjou N, Rashidi MR, Afshar Mogaddam MR, Jouyban A. Selection of Specific Aptamer against Rivaroxaban and Utilization for Label-Free Electrochemical Aptasensing Using Gold Nanoparticles: First Announcement and Application for Clinical Sample Analysis. BIOSENSORS 2022; 12:773. [PMID: 36290911 PMCID: PMC9599351 DOI: 10.3390/bios12100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
For the first time, a novel aptamer was designed and utilized for the selective detection of rivaroxaban (RIV) using the integration of bioinformatics with biosensing technology. The selected aptamer with the sequence 5'-TAG GGA AGA GAA GGA CAT ATG ATG ACT CAC AAC TGG ACG AAC GTA CTT ATC CCC CCC AAT CAC TAG TGA ATT-3' displayed a high binding affinity to RIV and had an efficient ability to discriminate RIV from similar molecular structures. A novel label-free electrochemical aptasensor was designed and fabricated through the conjugation of a thiolated aptamer with Au nanoparticles (Au-NPs). Then, the aptasensor was successfully applied for the quantitative determination of RIV in human plasma and exhaled breath condensate (EBC) samples with limits of detection (LODs) of 14.08 and 6.03 nM, respectively. These valuable results provide ample evidence of the green electrogeneration of AuNPs on the surface of electrodes and their interaction with loaded aptamers (based on Au-S binding) towards the sensitive and selective monitoring of RIV in human plasma and EBC samples. This bio-assay is an alternative approach for the clinical analysis of RIV and has improved specificity and affinity. As far as we know, this is the first time that an electrochemical aptasensor has been verified for the recognition of RIV and that allows for the easy, fast, and precise screening of RIV in biological samples.
Collapse
Affiliation(s)
- Rokhsareh Ebrahimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Abbas Afrasiabi Rad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Urmia 5756151818, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | | | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Faculty of Pharmacy, Near East University, P.O. Box 99138 Nicosia, North Cyprus, Mersin 99138, Turkey
| |
Collapse
|
22
|
Berni A, Ait Lahcen A, Salama KN, Amine A. 3D-porous laser-scribed graphene decorated with overoxidized polypyrrole as an electrochemical sensing platform for dopamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Yuan F, Xia Y, Lu Q, Xu Q, Shu Y, Hu X. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 2022; 244:123419. [DOI: 10.1016/j.talanta.2022.123419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
24
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
25
|
Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127014. [PMID: 34461543 DOI: 10.1016/j.jhazmat.2021.127014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Today's rampant abuse of antibiotics and lean meat powder disturbs environment and threatens public human health. Therefore, fast in-site detection of antibiotics or lean meat powder residue could avoid potential risks. In this work, flexible graphene electrodes (FGE) were easily and facilely patterned and prepared by CO2 laser at room environment, which was coupled with a portable electrochemical analyzer for electronic signal transmission. Laser-enabled flexible electrochemical sensor on finger can be used for rapid real-time in-site electrochemical identification of chloramphenicol (CAP), clenbuterol (CLB) and ractopamine (RAC) in meat. The electrochemical response of CAP, CLB and RAC is investigated with the limit of detection of 2.70, 1.29 and 7.81 μM and the linear range of 10-200, 5-80 and 25-250 μM in phosphate buffer saline (PBS) pH 7.0, correspondingly. The minimum detection concentrations of CAP, CLB and RAC were 20, 10 and 30 μM, respectively, in actual samples of pork. And the minimum detection concentrations of CAP, CLB and RAC were 10, 5 and 25 μM in milk, respectively. Such an integrated sensing platform enriches application of sensors on finger in food security and provides information that prevents drug containments from entering food chain.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
26
|
A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Anal Chim Acta 2022; 1194:339413. [DOI: 10.1016/j.aca.2021.339413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023]
|
27
|
Zhou R, Tu B, Xia D, He H, Cai Z, Gao N, Chang G, He Y. High-performance Pt/Ti3C2Tx MXene based graphene electrochemical transistor for selective detection of dopamine. Anal Chim Acta 2022; 1201:339653. [DOI: 10.1016/j.aca.2022.339653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
|
28
|
Liu J, Ji H, Lv X, Zeng C, Li H, Li F, Qu B, Cui F, Zhou Q. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Mikrochim Acta 2022; 189:54. [PMID: 35001163 PMCID: PMC8743164 DOI: 10.1007/s00604-021-05157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/26/2021] [Indexed: 02/05/2023]
Abstract
Laser-induced graphene (LIG) is a class of three-dimensional (3D) porous carbon nanomaterial. It can be prepared by direct laser writing on some polymer materials in the air. Because of its features of simplicity, fast production, and excellent physicochemical properties, it was widely used in medical sensing devices. This minireview gives an overview of the characteristics of LIG and LIG-driven sensors. Various methods for preparing graphene were compared and discussed. The applications of the LIG in biochemical sensors for ions, small molecules, microRNA, protein, and cell detection were highlighted. LIG-based physical physiological sensors and wearable electronics for medical applications were also included. Finally, our insights into current challenges and prospects for LIG-based medical sensing devices were presented.
Collapse
Affiliation(s)
- Jianlei Liu
- Department of Laboratory Medicine and Pathology, Foshan Fosun Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Haijie Ji
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Lv
- Department of Dermatology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Chijia Zeng
- Department of Laboratory Medicine and Pathology, Foshan Fosun Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Heming Li
- College of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Fugang Li
- Shanghai Engineering Research Center of iPOCT Medicine, Shanghai Industry Technology Innovation Strategic Alliance of iPOCT Medicine, Shanghai Upper Bio Tech Pharma Co., Ltd., Shanghai, 201201, China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Feiyun Cui
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Qin Zhou
- College of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
29
|
Deng H, Zhao J, Zhao S, Jiang S, Cui G. A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin. Analyst 2022; 147:1598-1610. [DOI: 10.1039/d1an02318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin.
Collapse
Affiliation(s)
- Huizhen Deng
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifan Zhao
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuai Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
30
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Beduk T, de Oliveira Filho JI, Ait Lahcen A, Mani V, Salama KN. Inherent Surface Activation of Laser-Scribed Graphene Decorated with Au and Ag Nanoparticles: Simultaneous Electrochemical Behavior toward Uric Acid and Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13890-13902. [PMID: 34787434 DOI: 10.1021/acs.langmuir.1c02379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laser-scribed graphene electrodes (LSGEs) have attracted great attention for the development of electrochemical (bio)sensors due to their excellent electronic properties, large surface area, and high porosity, which enhances the electrons' transfer rate. An increasing active surface area and defect sites are the quickest way to amplify the electrochemical sensing attributes of the electrodes. Here, we have found that the activation procedure coupled to the electrodeposition of metal nanoparticles resulted in a significant amplification of the active area and the analytical performance. This preliminary study is supported by the demonstration of the simultaneous electrochemical sensing of dopamine (DA) and uric acid (UA) by the electrochemically activated LSGEs (LSGE*s). Furthermore, the electrodeposition of two different metal nanoparticles, gold (Au) and silver (Ag), was performed in multiple combinations on working and reference electrodes to investigate the enhancement in the electrochemical response of LSGE*s. Current enhancements of 32, 27, and 35% were observed from LSGE* with WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE, compared to the same combinations of LSGEs without any surface activation. A homemade and practical potentiostat, KAUSTat, was used in these electrochemical depositions in this study. Among all of the combinations, the surface area was increased 1.6-, 2.0-, and 1.2-fold for WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE prepared from LSGE*s, respectively. To evaluate the analytical performance, DA and UA were detected simultaneously in the presence of ascorbic acid. The LODs of DA and UA are calculated to be ∼0.8 and ∼0.6 μM, respectively. Hence, this study has the potential to open new insights into new surface activation strategies with a combination of one-step nanostructured metal depositions by a custom-made potentiostat. This novel strategy could be an excellent and straightforward method to enhance the electrochemical transducer sensitivity for various electrochemical sensing applications.
Collapse
Affiliation(s)
- Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Erçarıkcı E, Aksu Z, Topçu E, Kıranşan KD. ZnS Nanoparticles‐decorated Composite Graphene Paper: A Novel Flexible Electrochemical Sensor for Detection of Dopamine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elif Erçarıkcı
- Department of Chemistry, Science Faculty Atatürk University Erzurum 25240 TURKEY
| | - Zeriş Aksu
- Department of Chemistry, Science Faculty Atatürk University Erzurum 25240 TURKEY
| | - Ezgi Topçu
- Department of Chemistry, Science Faculty Atatürk University Erzurum 25240 TURKEY
| | - Kader Dağcı Kıranşan
- Department of Chemistry, Science Faculty Atatürk University Erzurum 25240 TURKEY
| |
Collapse
|
33
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
34
|
Thomas J, Anitha P, Thomas T, Thomas N. Electrocatalytic sensing of dopamine: How the Co content in porous LaNixCoxO3 perovskite influences sensitivity? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Vivaldi F, Dallinger A, Bonini A, Poma N, Sembranti L, Biagini D, Salvo P, Greco F, Di Francesco F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30245-30260. [PMID: 34167302 PMCID: PMC8289247 DOI: 10.1021/acsami.1c05614] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.
Collapse
Affiliation(s)
- Federico
Maria Vivaldi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Andrea Bonini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Sembranti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Pietro Salvo
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Fabio Di Francesco
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
36
|
Mahmood F, Sun Y, Wan C. Biomass-derived porous graphene for electrochemical sensing of dopamine. RSC Adv 2021; 11:15410-15415. [PMID: 35424061 PMCID: PMC8698650 DOI: 10.1039/d1ra00735a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023] Open
Abstract
Cost-effective valorization of biomass into advanced carbon remains a challenge. Here we reported a facile and ultrafast laser writing technique to convert biomass into porous graphene for electrochemical sensing. Laser-induced graphene (LIG) was synthesized from a fully biomass-based film composed of kraft lignin (KL) and cellulose nanofibers (CNFs). The LIG-based electrode was applied to detect dopamine using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Dopamine with a concentration ranging from 5 to 40 μM was detected linearly, with a sensitivity of 4.39 μA μM-1 cm-2. Our study eliminated the use of synthetic polymer for lignin-based film formation. It demonstrated the feasibility of using the film fully composed of biomass for LIG formation. Furthermore, derived LIG electrodes were shown to have high electrochemical sensing performance.
Collapse
Affiliation(s)
- Faisal Mahmood
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
- Department of Energy Systems Engineering, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Yisheng Sun
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
| |
Collapse
|
37
|
Gao J, He S, Nag A. Electrochemical Detection of Glucose Molecules Using Laser-Induced Graphene Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2818. [PMID: 33923790 PMCID: PMC8073164 DOI: 10.3390/s21082818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
This paper deals with recent progress in the use of laser-induced graphene sensors for the electrochemical detection of glucose molecules. The exponential increase in the exploitation of the laser induction technique to generate porous graphene from polymeric and other naturally occurring materials has provided a podium for researchers to fabricate flexible sensors with high dynamicity. These sensors have been employed largely for electrochemical applications due to their distinct advantages like high customization in their structural dimensions, enhanced characteristics and easy roll-to-roll production. These laser-induced graphene (LIG)-based sensors have been employed for a wide range of sensorial applications, including detection of ions at varying concentrations. Among the many pivotal electrochemical uses in the biomedical sector, the use of these prototypes to monitor the concentration of glucose molecules is constantly increasing due to the essentiality of the presence of these molecules at specific concentrations in the human body. This paper shows a categorical classification of the various uses of these sensors based on the type of materials involved in the fabrication of sensors. The first category constitutes examples where the electrodes have been functionalized with various forms of copper and other types of metallic nanomaterials. The second category includes other miscellaneous forms where the use of both pure and composite forms of LIG-based sensors has been shown. Finally, the paper concludes with some of the possible measures that can be taken to enhance the use of this technique to generate optimized sensing prototypes for a wider range of applications.
Collapse
Affiliation(s)
- Jingrong Gao
- College of Light Industry and Food Science, South China University of Technology, Guangzhou 510006, China;
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, 5042 Bedford Park, Australia
| | - Anindya Nag
- School of Information Science and Engineering, Shandong University, Jinan 251600, China
| |
Collapse
|
38
|
Behrent A, Griesche C, Sippel P, Baeumner AJ. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Mikrochim Acta 2021; 188:159. [PMID: 33829346 PMCID: PMC8026455 DOI: 10.1007/s00604-021-04792-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/18/2021] [Indexed: 12/01/2022]
Abstract
Laser-induced graphene (LIG) has emerged as a promising electrode material for electrochemical point-of-care diagnostics. LIG offers a large specific surface area and excellent electron transfer at low-cost in a binder-free and rapid fabrication process that lends itself well to mass production outside of the cleanroom. Various LIG micromorphologies can be generated when altering the energy input parameters, and it was investigated here which impact this has on their electroanalytical characteristics and performance. Energy input is well controlled by the laser power, scribing speed, and laser pulse density. Once the threshold of required energy input is reached a broad spectrum of conditions leads to LIG with micromorphologies ranging from delicate irregular brush structures obtained at fast, high energy input, to smoother and more wall like albeit still porous materials. Only a fraction of these LIG structures provided high conductance which is required for appropriate electroanalytical performance. Here, it was found that low, frequent energy input provided the best electroanalytical material, i.e., low levels of power and speed in combination with high spatial pulse density. For example, the sensitivity for the reduction of K3[Fe(CN)6] was increased almost 2-fold by changing fabrication parameters from 60% power and 100% speed to 1% power and 10% speed. These general findings can be translated to any LIG fabrication process independent of devices used. The simple fabrication process of LIG electrodes, their good electroanalytical performance as demonstrated here with a variety of (bio)analytically relevant molecules including ascorbic acid, dopamine, uric acid, p-nitrophenol, and paracetamol, and possible application to biological samples make them ideal and inexpensive transducers for electrochemical (bio)sensors, with the potential to replace the screen-printed systems currently dominating in on-site sensors used. Graphical abstract ![]()
Collapse
Affiliation(s)
- Arne Behrent
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Christian Griesche
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Paul Sippel
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
39
|
Ouyang H, Li W, Long Y. Carbon-doped h-BN for the enhanced electrochemical determination of dopamine. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Tian J, Mu Z, Wang J, Zhou J, Yuan Y, Bai L. Electrochemical aptasensor for ultrasensitive detection of lipopolysaccharide using silver nanoparticles decorated titanium dioxide nanotube/functionalized reduced graphene oxide as a new redox nanoprobe. Mikrochim Acta 2021; 188:31. [PMID: 33415459 DOI: 10.1007/s00604-020-04695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/27/2020] [Indexed: 01/06/2023]
Abstract
A novel and relatively simple signal-off electrochemical aptasensor was constructed for highly sensitive detection of lipopolysaccharide (LPS). For the first time, silver nanoparticles (AgNPs) decorated titanium dioxide nanotube (TNT) was conjugated with polydiallyldimethylammonium chloride (PDDA) functionalized reduced graphene oxide (rGO) to form a new nanohybrid of Ag-TNT/P-rGO. This nanohybrid with a large specific surface area exhibited excellent electrochemical activity, which not only served as the sensing platform to immobilize LPS binding aptamer (LBA) but was also employed as the redox probe to monitor the change of the electrochemical signal. The electrochemical signal responses were measured by cyclic voltammetry (CV) in the potential range -0.3 to 0.5 V at a scan rate of 0.1 V/s. The proposed aptasensor exhibited acceptable stability, reproducibility, and specificity for LPS detection with a wide linear range from 17 fg/mL to 100 ng/mL. The limit of detection (LOD) was 5 fg/mL. Furthermore, the prepared aptasensor showed acceptable recovery ranging from 96% to 103%, and the RSD varied between 1.4% and 8.5% for determining LPS in real samples.Graphical abstract.
Collapse
Affiliation(s)
- Jiangman Tian
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Wang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yonghua Yuan
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
41
|
Dong Y, Liu J, Zheng J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|
43
|
Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens Bioelectron 2020; 169:112637. [DOI: 10.1016/j.bios.2020.112637] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
|
44
|
Hou X, Xu H, Zhen T, Wu W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Wang X, Yu L, Kang Q, Chen L, Jin Y, Zou G, Shen D. Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Getachew BA, Bergsman DS, Grossman JC. Laser-Induced Graphene from Polyimide and Polyethersulfone Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48511-48517. [PMID: 33052656 DOI: 10.1021/acsami.0c11725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The need to reduce and eliminate exposure to the toxic contaminant lead (Pb) from drinking water calls for advances in cheap and low-footprint sensing technologies such as stripping voltammetry. This study examines the performance of laser-induced graphene (LIG) electrodes from polyimide (PI) and polyethersulfone (PES) precursors in anodic stripping voltammetry of Pb(II). Despite their similar electrochemical properties and conductivity, as characterized by electrochemical impedance spectroscopy and two-point conductivity, respectively, subtle differences in physical and chemical properties, as measured by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively, lead to PI-LIG electrodes exhibiting higher sensitivity than PES-LIG electrodes. Enhanced electrochemical activity of the PES-LIG electrodes for side reactions due to sulfur substitutions could potentially account for the difference in performance. The results of this study highlight that the starting material can heavily determine the performance of electrodes formed via laser-induced graphitization for sensing and other electrochemical applications.
Collapse
Affiliation(s)
- Bezawit A Getachew
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
48
|
Ge C, Ramachandran R, Wang F. CeO 2-Based Two-Dimensional Layered Nanocomposites Derived from a Metal-Organic Framework for Selective Electrochemical Dopamine Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4880. [PMID: 32872309 PMCID: PMC7506630 DOI: 10.3390/s20174880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
In this work, we demonstrate the incorporation of two-dimensional (2D) layered materials into a metal-organic framework (MOF) derived from one-dimensional (1D) cerium oxide (CeO2) for the electrochemical detection of dopamine. Ce-MOF was employed as a sacrificial template for preparing CeO2 with 2D materials by the pyrolysis process. The influence of the pyrolysis temperature was studied to achieve a better crystal structure of CeO2. Siloxene improved the dopamine sensing performance of CeO2 compared with graphitic carbon nitride (g-C3N4) due to the basal plane surface oxygen and hydroxyl groups of 2D siloxene. Under optimal conditions, the fabricated CeO2/siloxene electrode exhibited a detection limit of 0.292 μM, with a linear range from 0.292 μM to 7.8 μM. This work provides a novel scheme for designing the CeO2 material with siloxene for excellent dopamine sensors, which could be extended towards other biosensing applications.
Collapse
Affiliation(s)
- Chengjie Ge
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (C.G.); (R.R.)
| | - Rajendran Ramachandran
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (C.G.); (R.R.)
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; (C.G.); (R.R.)
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Shenzhen 518055, China
| |
Collapse
|
49
|
Lahcen AA, Rauf S, Beduk T, Durmus C, Aljedaibi A, Timur S, Alshareef HN, Amine A, Wolfbeis OS, Salama KN. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosens Bioelectron 2020; 168:112565. [PMID: 32927277 DOI: 10.1016/j.bios.2020.112565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Laser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sakandar Rauf
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulrahman Aljedaibi
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science & Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Aziz Amine
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146. Mohammedia, Morocco.
| | - Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040, Regensburg, Germany.
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
50
|
Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine. SENSORS 2020; 20:s20123609. [PMID: 32604924 PMCID: PMC7349771 DOI: 10.3390/s20123609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Flexible screen-printed electrodes (HP) were fabricated on stone paper substrate and amperometrically modified with gold nanoparticles (HP-AuNPs). The modified electrode displayed improved electronic transport properties, reflected in a low charge-transfer resistance (1220 Ω) and high apparent heterogeneous electron transfer rate constant (1.94 × 10−3 cm/s). The voltammetric detection of dopamine (DA) was tested with HP and HP-AuNPs electrodes in standard laboratory solutions (pH 6 phosphate-buffered saline (PBS)) containing various concentrations of analyte (10−7–10−3 M). As expected, the modified electrode exhibits superior performances in terms of linear range (10−7–10−3 M) and limit of detection (3 × 10−8 M), in comparison with bare HP. The determination of DA was tested with HP-AuNPs in spiked artificial urine and in pharmaceutical drug solution (ZENTIVA) that contained dopamine hydrochloride (5 mg/mL). The results obtained indicated a very good DA determination in artificial urine without significant matrix effects. In the case of the pharmaceutical drug solution, the DA determination was affected by the interfering species present in the vial, such as sodium metabisulfite, maleic acid, sodium chloride, and propylene glycol.
Collapse
|