1
|
Martínez-Vollbert E, Philouze C, Cavignac T, Latouche C, Loiseau F, Lanoë PH. Neutral 2-phenylbenzimidazole-based iridium(III) complexes with picolinate ancillary ligand: tuning the emission properties by manipulating the substituent on the benzimidazole ring. Dalton Trans 2024; 53:4705-4718. [PMID: 38362807 DOI: 10.1039/d3dt03498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report the synthesis and characterization of ten neutral bisheteroleptic iridium(III) complexes with 2-phenylbenzimidazole cyclometallating ligand and picolinate as ancillary ligand. The 2-phenylbenzimidazole has been modified by selected substituents introduced on the cyclometallating ring and/or on the benzimidazole moiety. The integrity of the complexes has been assessed by NMR spectroscopy, by high-resolution mass spectrometry and by elemental analysis. The complexes are demonstrated to be highly phosphorescent at room temperature and a luminescence study with comprehensive ab initio calculations allow us to determine the lowest emitting excited state which depends on the substituent nature and its position on the cyclometallating ligand.
Collapse
Affiliation(s)
| | | | - Théo Cavignac
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
- Insitut universitaire de France (IUF), France
| | | | | |
Collapse
|
2
|
Abbaspourtamijani A, Chakraborty D, White HS, Neurock M, Qi Y. Tailoring Ag Electron Donating Ability for Organohalide Reduction: A Bilayer Electrode Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15705-15715. [PMID: 37885069 DOI: 10.1021/acs.langmuir.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Electrochemical reduction of organohalides provides a green approach in the reduction of environmental pollutants, the synthesis of new organic molecules, and many other applications. The presence of a catalytic electrode can make the process more energetically efficient. Ag is known to be a very good electrode for the reduction of a wide range of organohalides. Herein, we examine the elementary adsorption and reaction steps that occur on Ag and the changes that result from changes in the Ag-coated metal, strain in Ag, solvent, and substrate geometry. The results are used to develop an electrode design strategy that can possibly be used to further increase the catalytic activity of pure Ag electrodes. We have shown how epitaxially depositing one to three layers of Ag on catalytically inert or less active support metal can increase the surface electron donating ability, thus increasing the adsorption of organic halide and the catalytic activity. Many factors, such as molecular geometry, lattice mismatches, work function, and solvents, contribute to the adsorption of organic halide molecules over the bilayer electrode surface. To isolate and rank these factors, we examined three model organic halides, namely, halothane, bromobenzene (BrBz), and benzyl bromide (BzBr) adsorption on Ag/metal (metal = Au, Bi, Pt, and Ti) bilayer electrodes in both vacuum and acetonitrile (ACN) solvent. The different metal supports offer a range of lattice mismatches and work function differences with Ag. Our calculations show that the surface of Ag becomes more electron donating and accessible to adsorption when it forms a bilayer with Ti as it has a lower work function and almost zero lattice mismatch with Ag. We believe this study will help to increase the electron donating ability of the Ag surface by choosing the right metal support, which in turn can improve the catalytic activity of the working electrode.
Collapse
Affiliation(s)
- Ali Abbaspourtamijani
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dwaipayan Chakraborty
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Henry Sheldon White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew Neurock
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yue Qi
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Corbin N, Junor GP, Ton TN, Baker RJ, Manthiram K. Toward Improving the Selectivity of Organic Halide Electrocarboxylation with Mechanistically Informed Solvent Selection. J Am Chem Soc 2023; 145:1740-1748. [PMID: 36626202 PMCID: PMC9880992 DOI: 10.1021/jacs.2c10561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of a liquid electrolyte is nearly ubiquitous in electrosynthetic systems and can have a significant impact on the selectivity and efficiency of electrochemical reactions. Solvent selection is thus a key step during optimization, yet this selection process usually involves trial-and-error. As a step toward more rational solvent selection, this work examines how the electrolyte solvent impacts the selectivity of electrocarboxylation of organic halides. For the carboxylation of a model alkyl bromide, hydrogenolysis is the primary side reaction. Isotope-labeling studies indicate the hydrogen atom in the hydrogenolysis product comes solely from the aprotic electrolyte solvent. Further mechanistic studies reveal that under synthetically relevant electrocarboxylation conditions, the hydrogenolysis product is formed via deprotonation of the solvent. Guided by these mechanistic findings, a simple computational descriptor based on the free energy to deprotonate a solvent molecule was shown to correlate strongly with carboxylation selectivity, overcoming limitations of traditional solvent descriptors such as pKa. Through careful mechanistic analysis surrounding the role of the solvent, this work furthers the development of selective electrocarboxylation systems and more broadly highlights the benefits of such analysis to electrosynthetic reactions.
Collapse
Affiliation(s)
- Nathan Corbin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Glen P. Junor
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Thu N. Ton
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States
| | - Rachel J. Baker
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States
| | - Karthish Manthiram
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States,Email
| |
Collapse
|
4
|
Bonechi M, Giurlani W, Innocenti M, Pasini D, Mishra S, Giovanardi R, Fontanesi C. On the Dynamics of the Carbon-Bromine Bond Dissociation in the 1-Bromo-2-Methylnaphthalene Radical Anion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144539. [PMID: 35889412 PMCID: PMC9319363 DOI: 10.3390/molecules27144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
This paper studies the mechanism of electrochemically induced carbon-bromine dissociation in 1-Br-2-methylnaphalene in the reduction regime. In particular, the bond dissociation of the relevant radical anion is disassembled at a molecular level, exploiting quantum mechanical calculations including steady-state, equilibrium and dissociation dynamics via dynamic reaction coordinate (DRC) calculations. DRC is a molecular-dynamic-based calculation relying on an ab initio potential surface. This is to achieve a detailed picture of the dissociation process in an elementary molecular detail. From a thermodynamic point of view, all the reaction paths examined are energetically feasible. The obtained results suggest that the carbon halogen bond dissociates following the first electron uptake follow a stepwise mechanism. Indeed, the formation of the bromide anion and an organic radical occurs. The latter reacts to form a binaphthalene intrinsically chiral dimer. This paper is respectfully dedicated to Professors Anny Jutand and Christian Amatore for their outstanding contribution in the field of electrochemical catalysis and electrosynthesis.
Collapse
Affiliation(s)
- Marco Bonechi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
| | - Walter Giurlani
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
| | - Massimo Innocenti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence: (M.I.); (C.F.)
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy;
| | - Suryakant Mishra
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| | - Roberto Giovanardi
- Department of Engineering “Enzo Ferrari” (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy;
| | - Claudio Fontanesi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Department of Engineering “Enzo Ferrari” (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy;
- Correspondence: (M.I.); (C.F.)
| |
Collapse
|
5
|
Grecchi S, Arnaboldi S, Isse AA, D'Aloi C, Gennaro A, Mussini PR. Electrocatalytic Reduction of Bromothiophenes vs Bromobenzenes on Gold and Silver Electrodes: Enhancement from S specific adsorption and modulation from substituent effects. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hetemi D, Combellas C, Kanoufi F, Podvorica FI. Direct vs Indirect Grafting of Alkyl and Aryl Halides. Chemphyschem 2021; 22:1844-1849. [PMID: 34125990 DOI: 10.1002/cphc.202100296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/08/2021] [Indexed: 11/12/2022]
Abstract
The direct and indirect electrochemical grafting of alkyl and aryl halides (RX, ArX) on carbon, metal and polymer surfaces is examined. Their electrochemical reduction occurs at highly negative potential in organic solvents and very often produces carbanions because the reduction potentials of RX and ArX are more negative than those of their corresponding radicals. Therefore, direct electrografting of alkyl and aryl radicals generated from RX and ArX is not easy to perform. This obstacle is overcome using aryl radicals derived from the 2,6-dimethylbenzenediazonium salt (2,6-DMBD), which do not react on the electrode surface due to their steric hindrance but react in solution by abstracting an iodine or bromine atom from RX (X=I, Br) or ArI to give alkyl or aryl radicals. As a consequence, alkyl and aryl radicals are generated at very low driving force by diverting the reactivity of aryl radicals derived from an aryl diazonium salt; they attack the electrode surface and form strongly attached organic layers. This strategy applies to the chemical modification of polymers (polyethylene, polymethylmethacrylate) by alkyl halides under heating.
Collapse
Affiliation(s)
- Dardan Hetemi
- Pharmacy Department, Medical Faculty, University of Prishtina "Hasan Prishtina", Rr. "Dëshmorët e Kombit" p.n., 10000, Prishtina, Kosovo
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75013, Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75013, Paris, France
| | - Fetah I Podvorica
- Department of Chemistry, Faculty of Mathematical-Natural Sciences, University of Prishtina "Hasan Prishtina", 10000, Prishtina, Kosovo.,Academy of Sciences and Arts of Kosova, Rr. "Agim Ramadani" nr 305, 10000, Prishtina, Kosovo.,NanoAlb-Unit of Albanian Nanoscience and Nanotechnology, 1000, Tirana, Albania
| |
Collapse
|
7
|
Medvedev JJ, Medvedeva XV, Engelhardt H, Klinkova A. Relative activity of metal cathodes towards electroorganic coupling of CO2 with benzylic halides. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Heard DM, Lennox AJJ. Electrode Materials in Modern Organic Electrochemistry. Angew Chem Int Ed Engl 2020; 59:18866-18884. [PMID: 32633073 PMCID: PMC7589451 DOI: 10.1002/anie.202005745] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The choice of electrode material is critical for achieving optimal yields and selectivity in synthetic organic electrochemistry. The material imparts significant influence on the kinetics and thermodynamics of electron transfer, and frequently defines the success or failure of a transformation. Electrode processes are complex and so the choice of a material is often empirical and the underlying mechanisms and rationale for success are unknown. In this review, we aim to highlight recent instances of electrode choice where rationale is offered, which should aid future reaction development.
Collapse
Affiliation(s)
- David M. Heard
- University of BristolSchool of ChemistryCantocks CloseBristol, AvonBS8 1TSUK
| | | |
Collapse
|
9
|
Neukermans S, Samanipour M, Vincent Ching HY, Hereijgers J, Van Doorslaer S, Hubin A, Breugelmans T. A Versatile
In‐Situ
Electron Paramagnetic Resonance Spectro‐electrochemical Approach for Electrocatalyst Research. ChemElectroChem 2020. [DOI: 10.1002/celc.202001193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sander Neukermans
- Research Group Applied Electrochemistry & Catalysis (ELCAT) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
| | - Mohammad Samanipour
- Department of Chemistry Research Group Biophysics and Biomedical Physics (BIMEF) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
| | - H. Y. Vincent Ching
- Research Group Applied Electrochemistry & Catalysis (ELCAT) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
- Department of Chemistry Research Group Biophysics and Biomedical Physics (BIMEF) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
| | - Jonas Hereijgers
- Research Group Applied Electrochemistry & Catalysis (ELCAT) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
| | - Sabine Van Doorslaer
- Department of Chemistry Research Group Biophysics and Biomedical Physics (BIMEF) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
| | - Annick Hubin
- Research Group of Electrochemical and Surface Engineering (SURF) Vrije Universiteit Brussel Pleinlaan 2 1050 Brussel Belgium
| | - Tom Breugelmans
- Research Group Applied Electrochemistry & Catalysis (ELCAT) University of Antwerp Universiteitsplein 1 Wilrijk 2610 Belgium
- Separation & Conversion Technologies Vlaams Instituut voor Technologisch onderzoek (VITO) Boeretang 200, 2400 Mol Belgium
| |
Collapse
|
10
|
Affiliation(s)
- David M. Heard
- University of Bristol School of Chemistry Cantocks Close Bristol, Avon BS8 1TS UK
| | | |
Collapse
|