Basarir F, De S, Daghigh Shirazi H, Vapaavuori J. Ultra-long silver nanowires prepared
via hydrothermal synthesis enable efficient transparent heaters.
NANOSCALE ADVANCES 2022;
4:4410-4417. [PMID:
36321145 PMCID:
PMC9552902 DOI:
10.1039/d2na00560c]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Ultra-long silver nanowires (AgNWs) with an aspect ratio of >2000 were prepared by the hydrothermal synthesis method. The influence of reaction time (4-32 h), reaction temperature (150-180 °C), polyvinylpyrrolidone (PVP) molecular weight (10 000-1 300 000 g mol-1), PVP concentration (50-125 mM), glucose concentration (5.6-22.4 mM) and CuCl2 concentration (2-20 μM) on the AgNW length was investigated systematically. The optimum conditions provided nanowires with an average diameter of 207 nm, an average length of 234 μm and a maximum length of 397 μm. Finally, a AgNW electrode was prepared on a glass substrate and used in transparent heater application. The transparent heater enabled outstanding heat-generating properties, reaching >200 °C within 70 s with an applied voltage of 5 V. Our results demonstrate how increasing the aspect ratio of ultra-long AgNWs is beneficial for both optical and electronic applications in terms of increased transmission and a more efficient Joule effect in the heater application. In addition, our results show that AgNWs with different lengths can be simply obtained by tuning synthesis parameters.
Collapse