1
|
Zhang X, Wang Z, Guo X. Confinement-induced Ni-based MOF formed on Ti 3C 2T x MXene support for enhanced capacitive deionization of chromium(VI). Sci Rep 2025; 15:3727. [PMID: 39880971 PMCID: PMC11779811 DOI: 10.1038/s41598-025-87642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/Ti3C2Tx (Ni-BTC/Ti3C2Tx) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance. The uniformly decorated Ni-BTC can prevent MXenes from aggregation and provide a large specific surface area and rich pore structure. As a substrate supporting Ni-BTC, MXenes can effectively disperse the growth of Ni-BTC and enhance the ion transport rate. In addition, the unique three-dimensional structure of Ni-BTC/Ti3C2Tx provides horizontal charge transfer paths like two-dimensional nanosheets and has unique vertical charge transfer paths between nanosheets. Therefore, the Ni-BTC/Ti3C2Tx exhibits an exceptional chromium(VI) removal rate of 94.1%. The electrosorption capacity of the Ni-BTC/Ti3C2Tx for chromium(VI) is 124.5 mg g-1, much higher than that of the pure Ti3C2Tx (55.5 mg g-1). The superior CDI efficiency accomplished through the Ni-BTC/Ti3C2Tx electrode is due to the unique three-dimensional network structure and synergistic effect of the pseudocapacitance generated by the unique assembly of Ni-BTC and Ti3C2Tx. Ni-BTC/Ti3C2Tx is a promising CDI electrode material that can be used for capacitive deionization.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Chengde, 067000, People's Republic of China.
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, People's Republic of China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Zheng Wang
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Chengde, 067000, People's Republic of China.
| | - Xuejie Guo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| |
Collapse
|
2
|
Manimekala T, Sivasubramanian R, Dar MA, Dharmalingam G. Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Adv 2025; 15:2490-2522. [PMID: 39867323 PMCID: PMC11758807 DOI: 10.1039/d4ra07682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization. Hence, researchers have been exploring different cutting-edge technologies to address these challenges. This review focuses on biomass-derived activated carbon (BDAC) as a promising material for SCs. Initially, the methodology and key factors involved in synthesising BDAC, including crafting the building blocks of SCs, is detailed. Further, various conventional and novel material characterization techniques are examined, highlighting important insights from different biomass sources. This comprehensive investigation seeks to deepen our understanding of the properties of materials and their significance in various applications. Next, the architectural concepts of SCs, including their construction and energy storage mechanisms, are highlighted. Finally, the translation of the unravelled BDAC metrics into promising SCs is reviewed with comprehensive device-level visualisations and quantifications of the electrochemical performance of SCs using various techniques, including cyclic voltammetry (CV), galvanostatic charge-discharge test (GCD), electrochemical impedance spectroscopy (EIS), cyclic tests (CT), voltage holding tests (VHT) and self-discharge tests (SDT). The review is concluded with a discussion that overviews peanut-shell-derived activated carbon as it is a common and promising source in our geographical setting. Overall, the review explores the current and futuristic pivotal roles of BDAC in the broad field of energy storage, especially in SC construction and commercialisation.
Collapse
Affiliation(s)
- T Manimekala
- Electrochemical Sensors and Energy Materials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
| | - R Sivasubramanian
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amaravati Andhra Pradesh India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering Materials, Deanship of Scientific Research (DSR), King Saud University Riyadh 11421 Saudi Arabia
| | - Gnanaprakash Dharmalingam
- Plasmonic Nanomaterials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
| |
Collapse
|
3
|
Koli A, Kumar A, Pattanshetti A, Supale A, Garadkar K, Shen J, Shaikh J, Praserthdam S, Motkuri RK, Sabale S. Hierarchical Porous Activated Carbon from Wheat Bran Agro-Waste: Applications in Carbon Dioxide Capture, Dye Removal, Oxygen and Hydrogen Evolution Reactions. Chempluschem 2024; 89:e202300373. [PMID: 37909792 DOI: 10.1002/cplu.202300373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This work reports an efficient method for facile synthesis of hierarchically porous carbon (WB-AC) utilizing wheat bran waste. Obtained carbon showed 2.47 mmol g-1 CO2 capture capacity with good CO2 /N2 selectivity and 27.35 to 29.90 kJ mol-1 isosteric heat of adsorption. Rapid removal of MO dye was observed with a capacity of ~555 mg g-1 . Moreover, WB-AC demonstrated a good OER activity with 0.35 V low overpotential at 5 mA cm-2 and a Tafel slope of 115 mV dec-1 . It also exhibited high electrocatalytic HER activity with 57 mV overpotential at 10 mA cm-2 and a Tafel slope of 82.6 mV dec-1 . The large SSA (757 m2 g-1 ) and total pore volume (0.3696 cm3 g-1 ) result from N2 activation contributing to selective CO2 uptake, high and rapid dye removal capacity and superior electrochemical activity (OER/HER), suggesting the use of WB-AC as cost effective adsorbent and metal free electrocatalyst.
Collapse
Affiliation(s)
- Amruta Koli
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Amit Supale
- Dr. Patangrao Kadam Mahavidhyalaya College, Sangli, 416416, India
| | | | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Jasmin Shaikh
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| |
Collapse
|
4
|
Vikraman HK, George J, Reji RP, Kuppuswamy GP, Sutar SD, Swami A, Ramamoorthy S, Sundaramurthy A, Pramanik S, Velappa Jayaraman S, Perumal S, Sivalingam Y, Mangalampalli SRNK. Unprecedented Multifunctionality in Novel Monophase Micro/Nanostructured Ti-Zn Alloy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305126. [PMID: 37735144 DOI: 10.1002/smll.202305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Indexed: 09/23/2023]
Abstract
It is always challenging to integrate multiple functions into one material system. However, those materials/devices will address society's critical global challenges and technological demands if achieved with innovative design strategies and engineering. Here, one such material with a broader spectrum of desired properties appropriate for seven applications is identified and explored, and a glucose-sensing-triggered energy-storage mechanism is demonstrated. To date, the Titanium (Ti)-Zinc (Zn) binary alloys are investigated only as mixed phases and for a maximum of three applications. In contrast, the novel single phase of structurally stable 50 Ti-50 Zn (Ti0.5 Zn0.5 ) is synthesized and proven suitable for seven emerging applications. Interestingly, it is thermally stable up to 750 °C and possesses excellent mechanical, tribological properties and corrosion resistance. While exceptional biocompatibility is evident even up to a concentration of 500 µg mL-1 , the antibacterial activity against E. coli is also seen. Further, rapid detection and superior selectivity for glucose, along with supercabattery behavior, unambiguously demonstrate that this novel monophase is a remarkable multifunctional material than the existing mixed-phase Ti-Zn compounds. The coin-cell supercapacitor shows outstanding stability up to 30 000 cycles with >100% retention capacity. This allows us to prototype a glucose-sensing-triggered energy-storage-device system for wearable point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Hajeesh Kumar Vikraman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Jeena George
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Rence P Reji
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Guru Prasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sanjay D Sutar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Anita Swami
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Anandhakumar Sundaramurthy
- Department of Chemical Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sumit Pramanik
- Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Surya Velappa Jayaraman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Suresh Perumal
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - S R N Kiran Mangalampalli
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
5
|
Cheng S, Wang X, Du K, Mao Y, Han Y, Li L, Liu X, Wen G. Hierarchical Lotus-Seedpod-Derived Porous Activated Carbon Encapsulated with NiCo 2S 4 for a High-Performance All-Solid-State Asymmetric Supercapacitor. Molecules 2023; 28:5020. [PMID: 37446685 PMCID: PMC10343735 DOI: 10.3390/molecules28135020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Converting biowaste into carbon-based supercapacitor materials provides a new solution for high-performance and environmentally friendly energy storage applications. Herein, the hierarchical PAC/NiCo2S4 composite structure was fabricated through the combination of activation and sulfuration treatments. The PAC/NiCo2S4 electrode garnered advantages from its hierarchical structure and hollow architecture, resulting in a notable specific capacitance (1217.2 F g-1 at 1.25 A g-1) and superior cycling stability. Moreover, a novel all-solid-state asymmetric supercapacitor (ASC) was successfully constructed, utilizing PAC/NiCo2S4 as the cathode and PAC as the anode. The resultant device exhibited exceptionally high energy (49.7 Wh kg-1) and power density (4785.5 W kg-1), indicating the potential of this biomass-derived, hierarchical PAC/NiCo2S4 composite structure for employment in high-performance supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guojun Wen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China; (S.C.)
| |
Collapse
|
6
|
Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target 2023; 31:369-389. [PMID: 36721905 DOI: 10.1080/1061186x.2023.2175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Diva Meisya Maulina Dewi
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Zuhra Mumtazah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Agustina Oktafiani
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Fayza Putri Adila
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Moch Falah Hani Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Liu X, Liang B, Hong X, Long J. Electrochemical Performance of MnO2/Graphene Flower-like Microspheres Prepared by Thermally-Exfoliated Graphite. Front Chem 2022; 10:870541. [PMID: 35464230 PMCID: PMC9024236 DOI: 10.3389/fchem.2022.870541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
To enhance the electrochemical performance of MnO2/graphene composite, herein, thermally-exfoliated graphite (TE-G) is adopted as a raw material, and a hydrothermal reaction is conducted to achieve the exfoliation of TE-G and the loading of MnO2 nanosheets. Through optimizing the TE-G/KMnO4 ratio in the redox reaction between carbon and KMnO4, flower-like MnO2/G microspheres (MnO2/G-10) are obtained with 83.2% MnO2 and 16.8% residual graphene. Meanwhile, corresponding MnO2/rGO composites are prepared by using rGO as raw materials. Serving as a working electrode in a three-electrode system, MnO2/G-10 composite displays a specific capacitance of 500 F g−1 at 1 A g−1, outstanding rate performance, and capacitance retention of 85.3% for 5,000 cycles. The performance is much better than that of optimized MnO2/rGO composite. We ascribe this to the high carbon fraction in TE-G resulting in a high fraction of MnO2 in composite, and the oxygen-containing groups in rGO reduce the resulting MnO2 fraction in the composite. The superior electrochemical performance of MnO2/G-10 is dependent on the hierarchical porous structure constructed by MnO2 nanosheet arrays and the residual graphene layer in the composite. In addition, a supercapacitor assembled by TE-G negative electrode and MnO2/G positive electrode also exhibits superior performance. In consideration of the low cost of raw materials, the MnO2/G composite exhibits great application potential in the field of supercapacitors.
Collapse
Affiliation(s)
- Xuyue Liu
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Bing Liang
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
- *Correspondence: Bing Liang,
| | - Xiaodong Hong
- School of Materials Science and Energy Engineering, Foshan University, Foshan, China
| | - Jiapeng Long
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
8
|
Asymmetric supercapacitor based on novel coal fly ash derived metal–organic frameworks as positive electrode and its derived carbon as negative electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Wang D, Wang Y, Fu Z, Xu Y, Yang LX, Wang F, Guo X, Sun W, Yang ZL. Cobalt-Nickel Phosphate Composites for the All-Phosphate Asymmetric Supercapacitor and Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34507-34517. [PMID: 34255472 DOI: 10.1021/acsami.1c04614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, design of cost-effective multifunctional electromaterials for supercapacitors and oxygen evolution reaction (OER) and enhancing their functionalities have become an emphasis in energy storage and conversion. Herein, a series of cheap and functional phosphate composites with different ratios of cobalt and nickel are synthesized using a simple polyalcohol refluxing method, and their excellent capacity and OER properties are systematically studied. Notably, owing to the different major role of Co and Ni elements in the phosphate composites for capacity and OER, the optimal electroconductibility, structural adjustment, electrochemical active sites, and activities for capacity and OER are obtained from the composites with the different ratios of Co/Ni. In addition, using high-capacity BiPO4 (BPO) as the negative electrodes, the new type of all-phosphate asymmetric supercapacitor (CNPO-40//BPO) shows a high energy density and reaches 36.84 W h kg-1 at a power density of 254.52 W kg-1. Its cyclic stability is also more excellent than that of the CNPO-40//AC device using commercial activated carbon as the negative electrodes. This study is beneficial to the more in-depth research on efficient dual-function electromaterials in capacity and OER and provides a high-efficient way to improve the practicality of asymmetric supercapacitors using the high-capacity Bi-based electromaterials as the negative electrodes.
Collapse
Affiliation(s)
- De Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yanjing Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhenyu Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Li-Xia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Feng Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Xiaoling Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Wenjuan Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zheng-Long Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| |
Collapse
|
10
|
Liu G, Liu J, Xu K, Wang L, Xiong S. Fabrication of Flexible Graphene Paper/MnO
2
Composite Supercapacitor Electrode through Electrodeposition of MnO
2
Nanoparticles on Graphene Paper. ChemistrySelect 2021. [DOI: 10.1002/slct.202101207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gu Liu
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Jian Liu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Kejun Xu
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Liuying Wang
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Shanxin Xiong
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710054 PR China
| |
Collapse
|
11
|
Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:303002. [PMID: 33892487 DOI: 10.1088/1361-648x/abfb3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2,and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported.
Collapse
Affiliation(s)
- Shweta Tanwar
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology, Kurukshetra-136119, Haryana, India
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
12
|
Structural regulation of porous MnO2 nanosheets and their electrocapacitive behavior in aqueous electrolytes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob. MATERIALS 2020; 13:ma13235412. [PMID: 33261206 PMCID: PMC7731031 DOI: 10.3390/ma13235412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
In this work, African maize cobs (AMC) were used as a rich biomass precursor to synthesize carbon material through a chemical activation process for application in electrochemical energy storage devices. The carbonization and activation were carried out with concentrated Sulphuric acid at three different temperatures of 600, 700 and 800 °C, respectively. The activated carbon exhibited excellent microporous and mesoporous structure with a specific surface area that ranges between 30 and 254 m2·g-1 as measured by BET analysis. The morphology and structure of the produced materials are analyzed through Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Boehm titration, X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. X-ray photoelectron spectroscopy indicates that a considerable amount of oxygen is present in the materials. The functional groups in the activated carbon enhanced the electrochemical performance and improved the material's double-layer capacitance. The carbonized composite activated at 700 °C exhibited excellent capacitance of 456 F g-1 at a specific current of 0.25 A g-1 in 6 M KOH electrolyte and showed excellent stability after 10,000 cycles. Besides being a low cost, the produced materials offer good stability and electrochemical properties, making them suitable for supercapacitor applications.
Collapse
|