1
|
Li M, Jia C, Zhang D, Luo Y, Wang L, Yang P, Luo G, Zhao L, Boukherroub R, Jiang Z. Facile Assembly of Hybrid Micro-Supercapacitors for a Sunlight-Powered Energy Storage System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47595-47604. [PMID: 36240319 DOI: 10.1021/acsami.2c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, hybrid micro-supercapacitors (MSCs), consisting of positive CoNi layer double hydroxides (LDHs) decorated on carbon nanotubes (CoNi LDHs@CNTs) and negative CNT electrodes, were assembled by facile drop-coated and electrodeposition methods. The as-fabricated MSCs were optimized in view of electrochemical performance, and the CoNi LDHs-2@CNTs//CNT MSC exhibited a favorable performance and was thus chosen to be the candidate for MSC device package. The packaged CoNi LDHs-2@CNTs//CNT MSC demonstrated a large areal capacitance of 11.0 mF·cm-2 at a current density of 0.08 mA·cm-2, a good rate performance (56% areal capacitance retained at a higher current density of 0.4 mA·cm-2), and a favorable cycling stability and reversibility (92% of the original areal capacitance was retained after 5000 cycles). Furthermore, the MSC device recorded an energy density of 1.5 μWh·cm-2 at a power density of 42.5 μW·cm-2 and was successfully applied for the storage of energy supplied by solar cells to operate a red light-emitting diode. All these findings demonstrated the promising practical energy storage application of the as-fabricated hybrid MSC devices in the construction of sunlight-powered energy storage systems.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Chen Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Danyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Lu Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000Lille, France
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| |
Collapse
|
3
|
Wan L, Wang Y, Du C, Chen J, Xie M, Wu Y, Zhang Y. NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance. J Colloid Interface Sci 2021; 609:1-11. [PMID: 34890947 DOI: 10.1016/j.jcis.2021.11.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core-shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g-1 at 1 A g-1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg-1 at a power density of 739.8 W kg-1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| | - Yameng Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yapan Wu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|